PIRE: Science of Design for Societal-Scale Cyber-Physical Systems

This project aims to develop a new Science of Design for societal-scale Cyber- Physical Systems (CPS).

Rapid Scenario-Driven Integrated Simulation Experimentation Framework

Cyber-Physical Systems (CPS) are composed of a wide range of networked physical, computational, and human/organization components. These systems are highly complex as they have many different heterogeneous components, such as physical, computational, and human. Simulation-based evaluation of the behavior of CPS is complex, as it involves multiple, heterogeneous, interacting domains. Each simulation domain has sophisticated tools, but their integration into a coherent framework is a difficult, time-consuming, labor-intensive, and error-prone task.

Pre-curser for Fully Distributed Control of Powergrids

CPS: Small: Integrated Reconfigurable Control and Moving Target Defense for Secure Cyber-Physical Systems

Cyber-physical systems (CPS) are engineered systems created as networks of interacting physical and computational processes. Most modern products in major industrial sectors, such as automotive, avionics, medical devices, and power systems already are or rapidly becoming CPS driven by new requirements and competitive pressures.

Air Taxi (Hybrid or Electric) aero Nautical Simulation (ATHENS)

Automated design processes, especially using Machine Learning/AI techniques, require proposed systems to be evaluated across all relevant attributes, requirements, and concerns.  Traditionally, teams create models in a set of engineering tools for design evaluation data. 

Integrated Microgrid Control Platform (IMCP)

This project aims at developing and demonstrating a highly reusable ‘software platform’ that can be easily adapted to and used in various microgrid configurations.
Subscribe to Decentralized systems