PIRE: Science of Design for Societal-Scale Cyber-Physical Systems
This project aims to develop a new Science of Design for societal-scale Cyber- Physical Systems (CPS).
Modern society is increasingly dependent on software-integrated systems, whose science and engineering is often guided by societal values and preferences. Such systems require the understanding of complex, interacting processes, as well as societal preferences, laws, and policies, such that they operate in a regulated environment, often interacting with a multitude of existing information systems.
This project aims to develop a new Science of Design for societal-scale Cyber- Physical Systems (CPS).
Widespread use of automation in many sectors of society has yielded a large amount of data regarding historical behaviors for a variety of dynamical systems, such as unmanned aerial, marine, and ground vehicles, biological systems, and weather systems. This project aims to develop novel algorithms to discover governing rules that explain the observed behaviors (i.e., trajectories) of dynamical systems. Discovery of underlying models, while useful for analysis and control, can be computationally challenging.
Transportation accounts for 28% of the total energy use in the United States and as such, it is responsible for immense environmental impact, including urban air pollution and greenhouse gas emissions, and may pose a severe threat to energy security. As we encourage mode shift from personal vehicles to public transit, it is important to consider that public transit systems still require substantial amounts of energy; for example, public bus transit services in the U.S. are responsible for at least 19.7 million metric tons of CO2 emission annually.
Public transportation infrastructure is an essential component in cultivating equitable communities. However, public transit agencies have historically struggled to achieve this since they are often severely stressed in terms of resources as they have to make the trade-off between concentrating service into routes that serve large numbers of people and spreading service out to ensure that people everywhere have access to at least some service.
The COVID-19 pandemic has not only disrupted the lives of millions but also created exigent operational and scheduling challenges for public transit agencies. Agencies are struggling to maintain transit accessibility with reduced resources, changing ridership patterns, vehicle capacity constraints due to social distancing, and reduced services due to driver unavailability. A number of transit agencies have also begun to help the local food banks deliver food to shelters, which further strains the available resources if not planned optimally.
The rapid evolution of data-driven analytics, Internet of things (IoT) and cyber-physical systems (CPS) are fueling a growing set of Smart and Connected Communities (SCC) applications, including for smart transportation and smart energy. However, the deployment of such technological solutions without proper security mechanisms makes them susceptible to data integrity and privacy attacks, as observed in a large number of recent incidents. If not addressed properly, such attacks will not only cripple SCC operations but also influence the extent to which customers are willing to share data.
Ubiquitous access to mobile and web technologies enables the public to share valuable information about their surroundings anywhere and anytime. For example, during an emergency or crisis people report needs from affected areas via social media as an alternative to the traditional 911 calls. This can be valuable information for a range of emergency service officials. However, the utilization of this data poses several computational challenges as it is generated in real time, is heterogeneous, highly unstructured, redundant, and sometimes unreliable.
Cyber-Physical Systems (CPS) are composed of a wide range of networked physical, computational, and human/organization components. These systems are highly complex as they have many different heterogeneous components, such as physical, computational, and human. Simulation-based evaluation of the behavior of CPS is complex, as it involves multiple, heterogeneous, interacting domains. Each simulation domain has sophisticated tools, but their integration into a coherent framework is a difficult, time-consuming, labor-intensive, and error-prone task.