©DIGITAL VISION/© EYEWIRE COMPOSITE: MKC

Like any other scientific field, computing
emerged as a brilliant idea implemented
by brilliant scientists. Unfortunately, the
only users of computers for many years
were the brilliant scientists who invented
them-because only they knew the lan-
guage that the machines understood.
Computers would never have revolution-
ized the world if the user base of those
who could talk to computers had not
expanded. Over the past six decades,
computer "communicators" have evolved
from brilliant scientists computing shell
trajectories to grandparents dialing up to
check their e-mail. More importantly,
computer languages have evolved to
meet the demands of the computer
users. The continuation of this evolution
is the joining of design tools and the
executable system, in the form of Model-
Integrated Computing (MIC).

The integration of design tools and
an executable system is an important
step. For the past 10 years, software
engineering has been something of an
embarrassment to the computer science
field. The primary reason is its method-
ologies seldom work for all domains.
For example, the emergence of
the internet brought into focus
the need for a methodology to
design software not as a central-
ized application but as a client/server-
which requires a new approach when
building that software. This results in a
new practice or methodology every few
months to make up for the domain on
the next horizon (e.g., autonomous
agents or grid computing).

Computing and domains
Computers have evolved significantly
since Turing's codebreaking machine
and ENIAC in the 1940s. Computer pro-
gramming has also evolved since then:
from interconnecting wires to punch
cards, all the way to hand-written assem-
bly code and later high-level languages.
The first high-level languages created
(FORTRAN and COBOL) were instituted
because of their relevance to particular
domains (FORTRAN for engineering and
COBOL for business calculations).
Before FORTRAN and COBOL, programs
were written either with punch cards or
in assembly code. Thus, to be a coder in
those days knowledge of the specific
computer hardware was required.
Creating the code was difficult, as
the coder (the one who wrote the pro-
gram) and the program designer (i.e.,
the one who wanted the program) were
seldom the same person. Therefore, it

28

was necessary for the program designer
to explain the program's goals and
objectives to the coder. This process
was time consuming and error prone.
Also, once written, the code was not
trivial to analyze as it was written on
such a low level. FORTRAN and
COBOL allowed the gap between the
coder and program designer to shrink,
as well as provided more readable
code.

A domain is a family of related sys-
tems. For example, the domain of engi-
neering uses numerical analysis, matrix
operations, and optimization solvers to
achieve its goals. FORTRAN, as one of
the first high-level textual languages,
was designed specifically for use with
the engineering domain, and in its
prime was considered necessary knowl-
edge for an engineering programmer.
C/C++ and Java have replaced FOR-
TRAN as the "must know" language for
employment today. Unfortunately,
whereas FORTRAN was more domain-
specific than assembly code (i.e., it was
targeted specifically toward the engi-
neering world), C/C++ and Java are less
domain-specific for engineering than
FORTRAN was. Language preferences
aside, although C/C++ and Java may not
be the best programming language for
engineering, they are tools that provide
a knowledgeable programmer with the
ability to create domain-specific envi-
ronments in the form of the application.

Domain-specific environments

A domain-specific environment pro-
vides a domain expert with tools and

0278-6648/04/$20.00 © 2004 IEEE

an interface to use a computer to help
solve problems in that domain.
Software for engineering computer-
based systems has proven to be useful
to design engineers and programmers.
MATLAB (heavily based on FORTRAN),
with its interpretive environment,
allows for quick evaluation of written
code without compilation. This ability
provides engineers with an interface for
complex mathematical manipulations in
conjunction with frequently used engi-
neering transforms (Bode plots, trans-
formations into the frequency domain,
etc.). Computer applications such as
SPICE (circuit specification through a
text file) have emerged for circuit analy-
sis. Experts in domains have learned to
harness the computer to aid them in
solving problems.

In addition to system and software
designers, end users have also benefited
from domain-specific environments. The
Microsoft Office Suite is an appli-

cation is designed for use in
an the office (spreadsheet,
presentations, e-mail, doc-
ument preparation). The
Mathematica tool is designed
specifically for solving mathe-
matical problems by directly inputting
mathematical equations. Autodesk's
AutoCAD is a computer aided drafting
tool designed for creating technical
drawings and blueprints from computer
models.

Each application, and others too
numerous to mention, was created using
a programming language such as C/C++
with one particular domain in mind. In
each case, programmers abstracted the
domain-specific problems that the appli-
cations aimed to solve into domain-
independent algorithms that C/C++ was
designed to solve.

Computer programmers created the
integrated development environment
(IDE) to aid them when creating new
applications. The IDE is a special appli-
cation that provides the ability to create,
edit, debug, and generate new applica-
tions. By creating an application for the
development of applications, program-
mers were able to "bootstrap" the appli-
cation development process.

Domain-specific modeling
environments

Later, thinking on a higher, or "meta"
level, computing researchers realized
that the creation of domain-specific
environments was itself a domain. The
IDE (as an application for creating

IEEE POTENTIALS

applications) was a first step toward this
realization, but the IDE was still too
open-ended (that is, not every applica-
tion created by an IDE could function
as a design environment for a domain).
If it were possible to create a domain-
specific environment designed specifi-
cally for creating domain-specific envi-
ronments, then the overhead required
for developing small-scale environ-
ments (e.g., creating a software class
structure and basic programming over-
heads), and the difficulties of maintain-
ing large-scale environments (e.g., doc-
umentation management, coding con-
ventions) might be alleviated. Using this
domain-specific IDE, every application
that was generated would be a design
environment customized to a particular
domain. This is a restricted view of the
purpose of programming, and is most
suitable for domains with well-defined
abstractions that are used to compose a
design's behavior. The use of these
abstractions as programming elements
is referred to as modeling.

In the engineering world, a model is
a mathematical abstraction that explains
and/or predicts the behavior of a physi-
cal artifact. Model-integrated computing
(MICQ) is the technique of using models
to describe an application or computer-
based system. Model-integrated pro-
gram synthesis (MIPS) uses MIC to pro-
duce the model, and then from that
model produces the computer program
that is the executable code (also known
as the executable model) of the com-
puter-based system.

Users that employ the MIC or MIPS
approach have been successful users of
domain-specific modeling environments
(DSMEs). This is because a DSME is a
convenient way to customize and work
with a finite set of interacting "models"
that describe a computer-based system.
Before utilizing the MIC or MIPS
approach, a trade-off analysis is per-
formed. The analysis amortizes the
amount of labor required to create the
appropriate domain-specific environ-
ment, vs. the amount of labor saved in
creating a solution using a domain-
independent environment. For the right
systems, MIC can be extremely benefi-
cial (e.g., gate-level specification using
four different gates), but could also be
more trouble than it is worth (e.g.,
building a graphical language for C++).
DSMEs are different from IDEs in one
major way: IDEs are used to specify
software, and DSMEs are used to speci-
ty systems. This allows the implementa-

FEBRUARY/MARCH 2004

tion to Dbe

decoupled from
the specifica-
tion, and is the
major advance-
ment of the

Metaprogramming Environment Application Application
Interface Evolution Evolution Domain
=3] A A A
Formal Specifications i i ?p : g P gp
1
i A J

DSME over the
IDE as the
design environ-
ment for com-
plex systems.

Meta-Level
Translation

The meta-
model

The method
for the rapid
creation of
domain-specific
environments is to create a metamodel-
ing environment whose purpose is to
create domain-specific environments. In
a domain (such as CAD or accounting)
only certain portions of the physical
world have an impact. For example, it
is not necessary for an accountant to
know how much L2 cache her proces-
sor has when computing her taxes. The
essence of the domain-specific environ-
ment is that on/y those things important
in the domain are available to the
domain user. The metamodeling envi-
ronment then should be able to create a
representation for anything that might
exist in a domain. Once all actors of the
domain have been represented in the
metamodeling environment, then the
domain-specific modeling environment
can be created. A DSME is a domain-
specific environment that uses models
and/or MIPS to create systems. Because
such a great deal of meaning is incor-
porated into the elements of the DSME,
a significant amount of the low-level
details can be extracted from the
domain elements themselves, without
requiring the modeler to worry about
them. Returning again to a gate-level
design example, a
NAND gate has an
easily recognized
symbol, and a well-
understood behavior.
Using a special type
(with a picture to
represent the gate) a
DSME can attach
behavioral semantics
to that type, and use
those semantics
when generating the
final output of the
system. This

becomes more the system.

Model Interpreters

Metamodeler's Tools

" creates

MetaModel of
Domain

Fig. 1 Overview of Model Integrated Program Synthesis (MIPS)

worthwhile when complicated objects
(such as counters or multiplexers) are
available for use in the DSME.

The metamodeling environment
makes rapid development of these
DSMEs possible. Today's software prac-
tices can take years of man-hours to
produce prototypes of a system, while
metamodeling and MIC have been
shown to take appropriate systems from
start to finish in a matter of man-months
(a DSME designed for the dynamic
reconfiguration of Saturn's Delaware
plant required two man-weeks of pro-
gramming and two hours for installa-
tion). The biggest advantage of the
DSME is that it advances what COBOL
and FORTRAN started: making comput-
ing accessible to more domain experts,
and allowing for the reduction of
menial labor required in producing and
maintaining a computer-based system.

Evolution with MIC

MIC and MIPS truly shine in the area
of evolution. One of the fundamental
ideas of MIC is that the size of the
change in specification should be pro-
portional to the size of the change of

Domain Modeler's Tools

configures . »

- Domain Specific
Modeling Environment
creates

Domain Specific Models

Fig. 2 The cascading design approach. Metamodeling tools are
used to design a domain specific modeling environment. This
customized environment is then used to develop the models of

29

the implementation. Changing the sam-
pling time of a system, for example,
should not require a change in the soft-
ware architecture. MIC has several lay-
ers of specification that are subject to
change, so it is important to understand
the context of each type of evolution.
Figure 1 is an overview of the types of
evolution from the perspective of the
computer-based system, and Fig. 2
details the cascading approach of devel-
oping the tools first, and using the cus-
tom generated (i.e., domain-specific)
tools to develop the system models.

Application evolution

Application evolution is the evolution
of the computer-based system execution
models (see Fig. 1). The applications
that drive some computer-based systems
are implemented with no plans for
upgrade because developers think they
will be replaced (e.g., the Y2k prob-
lem). However, others are implemented
with specific guidelines for mainte-
nance, which may or may not be fol-
lowed. Still others are implemented with
no thought put into the question at all.

Traditional software and system engi-
neering has depended on software
experts to maintain engineering systems.
This means that even small changes to
an already implemented computer-
based system requires a software expert
to understand the changes, and then
investigate the ramifications of those
changes to the already implemented
code. The change process can result in
unintended consequences; e.g., system
downtime. In general, the change
process is not a rapid one as the soft-
ware expert is not always familiar with
the engineering portion of the system.

Since with MIC the behavior and
structure of the system is specified
using models, then any changes to that
behavior are made to the models. Then
the updated system is generated from
the models and installed. The right side
of Fig. 1 gives an overview of the MIPS
evolution cycles. Application evolution
is facilitated by the MIPS environment,
which is developed for the domain.
Notice that in order to modify the exe-
cution models, changes are made to the
domain models (i.e., the above layer).

Environment evolution

Another kind of system evolution is
the evolution of the MIPS environment
itself. Computer-based systems that are
not well designed are difficult to main-
tain. Also, the poor analysis of the

30

requirements of a computer-based system
can result in delayed deployment due to
unsuccessful operation or inadequate per-
formance during field-testing. The com-
puter-based systems with the best designs
have usually been engineered with good
design principles and rigorous analysis of
the mathematical models that govern the
system. Good designs take into account
all of the factors of the system and exam-
ine all of the entities of the domain to
determine the solution.

However, no matter how rigorous the
analysis or strict the adherence to good
design principles, computer-based sys-
tems can, and do, eventually change in
their definition. That is, the factors and
entities present in the original design
may have changed or been removed.
The resulting system may require mainte-
nance/updating not only on the instance
level, but also on the metamodel level.
This is known as environment evolution.
Environment evolution is required when
any formal specification of the domain is
changed. If a component of a system is
no longer available for installation (for
example, modeling amplifiers using tran-
sistors rather than tubes) then the DSME
should no longer provide a tube as a
possible part, but should instead give the
proper transistor. After changing these
formal specifications, the meta-level
translator is used to generate the new
MIPS environment. As was true in appli-
cation evolution, to affect changes to this
layer of modeling, the layer above is
changed-in this case, the metamodel.

Conclusion

The integration of design tools and
an executable system is an important
step in software engineering's evolu-
tion. Model Integrated Computing
through the use of Domain Specific
Modeling Environments is an emerging
approach to computer programming.
By providing a customized level of
abstraction in a relatively short period
of time, and leveraging existing domain
knowledge of by creating the language
specifically for a domain expert, DSMEs
are a logical progression of system
design technology. MIC is the technolo-
gy that turns a design tool into an exe-
cutable system.

DSMEs should be used only when
they fit the profile required by the
domain. A domain with a manageable
set of components with well-understood
behaviors is an excellent candidate for a
DSME, as the final computer system can
be generated from the model of the sys-

tem. Once the domain is identified, then
it is possible to use metamodeling to
develop a language that suits that
domain. To quote Mark Twain, "The dif-
ference between the right word and the
almost right word is the difference
between lightning and the lightning
bug." MIC is the practice of finding the
perfect words to express the problems
of a domain, and using the implied
meaning of the language to rapidly and
efficiently implement the system.

Read more about it

* Lohr, Steve. The Programmers who
Created the Software Revolution - Go To,
Basic Books, 2001.

* MetaCase Consulting, "MetaEdit+
Revolutionized The Way Nokia
Develops Mobile Phone Software,"
MetaCase Technical Report, Jyviskyla,
Finland, 2002.

* E. Long, A. Misra, J. Sztipanovits,
"Increasing Productivity at Saturn," IEEE
Computer Magazine, vol. 31, no. 8, Aug
1998, pp. 35-43.

* J. Garrett, A. Ledeczi, F. DeCaria:
"Towards a Paradigm for Activity
Modeling," 2000 IEEE International
Conference on Systems, Man, and
Cybernetics, Nashville, TN, October,
2000.

* J. Sztipanovits, G. Karsai, "Model-
Integrated Computing," IEEE Computer
Magazine, vol. 30, no. 4, Apr 1997, pp.
110-112.

* J. Miller, et al., "What UML Should
Be," Communications of the ACM, vol.
45, no. 11, Nov 2002, pp. 67-85.

About the author

Jonathan Sprinkle is a postdoctoral
researcher at the University of
California, Berkeley. He received his
Ph.D. in 2003 from Vanderbilt University
in Nashville, TN, where he performed
research in metamodel based environ-
ment evolution. He received his Masters
from Vanderbilt in 2000, and his bache-
lors in cursu honorum with a double
major in Electrical Engineering and
Computer Engineering from Tennessee
Technological University in Cookeville,
TN, where he served as student body
president in 1998-99.

During his graduate career Jonathan
was the recipient of an IBM Fellowship,
held the position of Master Teaching
Fellow in the Vanderbilt University
Center for Teaching, and was selected
as one of 10 young researchers in the
United States to attend the 52" Meeting
of the Nobel Laureates in 2002.

IEEE POTENTIALS

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

