Model Based Self Adaptive Behavior Language for Large Scale Real time
Embedded Systems

Shweta Shetty, Sandeep Neema, Theodore Bapty
Institute for Software Integrated Systems, Vanderbilt University,
2015 Terrace Place, Nashville, TN 37235

{shweta.shetty, sandeep.neema, ted.bapty} @vanderbilt.edu
http://www.isis.vanderbilt.edu

Abstract

At Fermi lab, high energy physics experiments require
very large number of real time computations. With
thousands of processors (around ~1000 FPGA’s , ~2500
embedded processors ,~2500 PC’s and ~25,000,000
detector channels) involved in performing event filtering
on a trigger farm, there is likely to be a large number of
failures within the software and hardware systems.
Historically, physicists have developed their own software
and hardware for experiments such as BTeV [9]
However, their time is best spent working on physics and
not software development. The target users of this tool are
the physicists. The tool should be user-friendly and the
physicists should be able to introduce custom self-
adaptive behaviors, since they can best define how the
system should behave in fault conditions. The BTeV
trigger system is being used as a model for researching
tools for defining fault behavior and automatically
generating the software. This paper presents a language
to define the behaviors and an application scenario for
the BTeV system and its expected fault scenarios. These
self adaptive system tools are implemented using Model
Integrated Computing. The Domain specific graphical
language (DSL) is implemented within the Generic
Modeling Environment (GME) tool, which is a meta-
programmable modeling environment developed at
Vanderbilt University.

1. Introduction

Software development for real time embedded
systems can be difficult, as these systems are part of a
physical environment whose complex dynamics and the
timing requirements have to be adhered to. Embedded real
time systems should produce not only the correct outputs,
but should produce them at the right time. Furthermore, a
reasonable “behavior” is expected from these systems
even under the fault scenarios, when the hardware or the
software components fail. Large-scale systems (i.e. 100’s
to 1000’s of processors) represent further challenges. This
work is motivated by a large scale real time embedded

system under construction at Fermi Lab, where high
energy physicists use massive facilities to delve into the
basic composition of matter. We are investigating and
developing a self-adaptive approach that relies on fault-
mitigation to provide fault tolerance in this class of
systems.

It has been argued that self-adaptive approaches and
infrastructure help mitigate the complexity of tuning, and
maintaining embedded systems [1][2]. Unfortunately, this
benefit comes at the expense of increased complexity in 1)
developing a self-adaptive application approach, and 2)
infrastructure itself. Constructing a self-adaptive solution
requires significant effort in designing and programming
the adaptive behaviors at multiple levels of the software
infrastructure, including: 1) the application, 2) the
middleware, and 3) the operating system. Furthermore, the
adaptive behaviors need to be coordinated, across the
different levels of the software infrastructures, and across
processor boundaries in an extremely large-scale
distributed system. Clearly, a low-level programming
based approach that hard-wires adaptive behaviors do not
scale for this class of system. A system developed this
way would be extremely brittle to support the evolving
requirements. Automated tools supporting a higher-level
of abstraction are required to assist the system developers
in managing the complexity. Since the target users are the
physicists themselves, the tool should be user-friendly and
should offer higher-level abstractions that are easier to
manipulate and maintain, and amenable to analysis.
Finally, the tools must have the ability to synthesize low-
level programming implementations from the higher-level
abstractions, alleviating the need for a programmer to
construct code, while ensuring consistency with the
higher-level abstractions.

To address these issues we have applied Model-
Integrated Computing (MIC) [4][5][6][7], a methodology
for developing tool-driven embedded software solutions
developed and refined over two decades of research at
ISIS, Vanderbilt University. The key elements of an MIC-
based approach are:

1. A Domain-Specific Modeling Language (DSML),
the syntax and static semantics of which are precisely



defined using UML-based notations and OCL-based
constraints in a meta-programming environment.

2. A Meta-Programmable  Generic = Modeling
Environment (GME) [8] that instantiates the DSML,
resulting in a  Domain-Specific = Modeling
Environment (DSME) which is highly customized for
the needs of the system developers in the target
domain.

3. System developers build Integrated Multiple-View
Models in the DSME capturing information relevant to
the target system from several aspects. The information
captured includes adaptive behaviors, information
processing architecture, and physical architecture of the
target system.

4. Model translators, which generate inputs to various
analysis tools, as well as synthesize various low-level
artifacts for instantiating/deploying the system.
Utilizing these key capabilities of MIC, we (in

collaboration with other research groups) are developing

tools for designing self-adaptive solution that provides
fault-tolerance via mitigation for a class of large-scale
real-time embedded systems. The rest of this paper is

organized in the following manner: Section 2 provides a

description of System Development Environment, Section

3 describes the System Synthesis from models. Section 4

demonstrates the Results and the Experiments conducted

with a prototype of our tools.

2. System Development Environment

The application scenario which we at Vanderbilt are
working on is the BTeV system at Fermilab. The BTeV
experiment [9] includes a trigger with approximately
5,000 CPU’s. These are time critical event filtering
applications running on trigger farms with thousands of
processors that are likely to suffer from a large number of
failures within the software and hardware systems. There
are three main entities of the whole application: 1) EPICS
Control System (System Operator Interface), 2) Modeling
tools, and 3) ARMOR (Reconfigurable fault-tolerance
entities) [6] (explanation of ARMOR is out of scope of
this paper).The EPICS system provides a means of
injecting faults into the system and also helps the user to
see the effects of those faults on the system. EPICS
provides the operator with all the necessary system
information. Some of the system control is also available
to the operator. The modeling environment provides a
graphical language where a system developer (in this case
the Physicists) can design and specify the system. The
domain-specific graphical abstractions as provided in the
modeling environment and the analysis and system
synthesis capabilities are particularly attractive to the
physicists. The modeling tool allows for the specification

of system from several different aspects. The significant

aspects are:

e Application Data Flow: the component-based
specification of information processing,

e Hardware Resources: the physical computer hardware
used in system implementation, and

o Failure Mitigation Strategies: the specification of
how the system should detect and react to component
and system failures.
Next we provide a detailed overview of these

individual aspects to illustrate the modeling environment.

2.1. Data Flow Specification Language

As shown in the Figure 1 below, this aspect lets a
system developer define the key software components and
the flow of data between them. A standard hierarchical
dataflow notation is used, where nodes (boxes) capture the
software components (algorithms) and lines show the flow
of data between nodes. These models can represent
synchronous or asynchronous behavior, and a variety of
scheduling policies. For the BTeV trigger, these are
primarily asynchronous operation, with data-triggered
scheduling.

s
T

oo

7
-
SaoEo
F@E
Pl
3
:
9| i2

Gen + Swieh T

Figure 1. Data Flow Model

The primitive software components in the dataflow
modeling are associated with a script that provides the
implementation of the software component. Figure 2
shows a screen-shot of the dataflow modeling aspect with
several processes and dataflow links between them. (The
fault-manager processes are also depicted in the dataflow
modeling view. These fault-manager processes are
associated with fault-mitigation strategies described later.)

2.2. Resource Specification Language

This aspect defines the physical structure of the target
architecture. Block diagrams capture the processing nodes
(e.g. CPU-s, DSP-s, FPGA-s). Connections capture the
networks and busses over which data can flow. One of the
assumptions made here is that the hardware component is
modeled exactly the same way as it is laid out physically.



aegagaa

Figure 2. Hardware Component

2.3. Fault Mitigation Strategy

The motivation behind the fault mitigation strategy
language is generally the desire for integration of prior
knowledge into the fault detection system and to use a
recursive narrowing of fault probabilities to aid in the
identification of symptoms. The goals of the fault
mitigation mechanism as indicated above are threefold:

1. Maintain the maximal application functionality

for any set of component failures

2. Recover from failures as completely and rapidly

as possible.

3. Minimize the system cost, resulting from

excessive hardware redundancy.

These goals are contradictory in nature. Maintaining
the maximum application functionality for a set of
component failures requires redundant resources if
performance is not to be compromised. However,
increasing redundancy increases the cost of the system.

In our approach we have defined three different
hierarchical levels of control: local, regional, and global
fault-managers. Hierarchy is a simple, yet powerful
concept that has been applied and proven in many types of
complex and large-scale organization. The BTeV trigger
system is similar in terms of complexity and scale.
Clearly, in a system of this size, sending all fault-
information to a centralized fault-manager for a mitigation
decision is not a scalable approach. Reaction time would
suffer in small systems, and be increasingly large as
systems are scaled up. The Local managers are the leaf
nodes, responsible for sensing faults and implementing
actions. Regional managers handle successively larger
regions of hardware. Global managers are the top-level
fault mitigation agents, interfacing with external systems
and/or users. These levels roughly correspond to the
inherent hierarchical organization of the BTeV Trigger
architecture.

System Global Manager

Interface ‘ Mitigation Engine‘ ‘ Reflex Actions ‘

Actions

Regional Manager

‘ Mitigation Engine ‘ ‘ Reflex Actions ‘<L_:

i Fee
Actions

Local Manager

Mitigation Engine ‘ Reflex Actions ‘<L_y

DSP Kernel

Figure 3. Hierarchical Fault Mitigation

Faults are handled at the lowest layer possible.
At any specific level, if mitigation is not possible, due to
resource availability, or lack of sufficient contextual
information, the fault is promoted to the next level of fault
manager.

2.3.2. Fault Mitigation Language

This aspect of the modeling environment defines the
fault-mitigation strategy. A Statecharts-like [13] notation
is provided that allows a developer to define various
failure states. Conditions to enter or leave those states,
along with actions to be performed when state transitions
occur are also defined. The language can be summarized
at a high level as follows:

e The nodes in the state diagram are system states,
corresponding to a particular phase of system
operation or a mitigation step.

e Lines are transitions between states, capturing the
logical progression of system modes. Transitions
occur in reaction to specified events (hardware
faults, OS faults, user-defined errors, fault-
mitigation commands from higher level of fault-
managers etc).

e Transitions are annotated with triggers, guards
and actions. Triggers determine the specific
combination of events present when state
transition should occur. Actions define the
operations to be performed as a transition occurs.
These actions can include moving tasks,
rerouting  communications,  resetting  and
validating hardware, changing the application
algorithms, etc

The first step in the development of a new language is
to specify the syntax and the visualization in the GME [2]



Behavior

Machine <<Folder>>

<<Model>>

SiBase _T ?

<<FCO>> |51
o
Action : field

Lo}
Initial
<<Atom>> L__
TypeConn
<<Connection>>
7=
0.* dst|0." 0.7

TypeRefBase
Dat
2 <<FCOProxy>>

Transition
<<Connection>>
Guard: field
Trigger :  field

State

Decomposition : enum [+

<<Atom>>

ArraySize ffield
Modifier :enum
i

Scope: enum [0.7
Type : field
InitialValue : field

Figure 4. Meta-Model describing the Language

meta-modeling environment. The meta-model for the state
machine language uses the UML [6] based notations
describing the different associations and interactions
between the components. Figure 4 shows the metamodel
components. In metamodel we can see that Behaviour
Component contains Machine which in turn contains the
State. The Machine can be considered as Fault Manager
whose behavior can be described using StateChart
concepts. Based upon whether they receive or send data
the Ports can be specialized as Inmput or Output. The
Behavior state machines perform actions based on
triggering conditions. The T7riggers is defined as a
Connection which has the attributes which specify the
triggering condition and action to be performed. The
action code which is the fault handling code is mainly
written in C and based on the type of the guard/trigger the
action would be either to send the message (action, error,
statistical) upstream or downstream. These triggering
conditions take the form of messages. Messages are
utilized to propagate notification of failures up through
the hierarchy. In order to minimize the bandwidth while
providing the maximum flexibility, the messages are
specified to have a variable length, based on the originator
of the message. Considering the BTeV trigger architecture
as an asynchronous message passing system, the messages
defined for this prototype are typically:

e  Fault/Error Message, reporting errors in
hardware, or application.

e Control messages, both decision requests and
commands that force parameters to change in
the running system

e  Statistical messages are periodic in nature.

The Fault Mitigation Strategy Language overall supports
following features
1. Hierarchy - The user can specify Hierarchical
State Machines using concurrent models which
reduces the complexity significantly. Each state
of a hierarchical state machine can contain a
whole state machine and so on.

2. Asynchronous Message Passing - Considering
the Asynchronous nature of the architecture the
state  machine  generation can  handle
asynchronous nature of the messages coming in
the states.

3. Reactive - Continuous interaction with
environment; system responses depend on input,
system state and time.

Currently, we have a fairly simple language for specifying
the fault handling aspect. The Action code of the fault
handling aspect is written in C which is not highly
intuitive for a person who is not well versed with the
Kernel functions. Since the focus of this tool is to make
domain specific fault handling language, the action
functions should focus more on the fault handling aspect
of BTeV trigger system. We have few predefined fault
handling functions which would be called from the Action
component and whose implementation is available in the
Kernel. Also, we plan to model the real time constraints
accurately and make the behavior more temporal based by
adding timers.

3 System Generation

The overall system is generated once the models and
the fault behaviors have been defined by the user. Several
low-level artifacts are generated from the models in order
to derive an implementation. System synthesis performs
the following key activities:

o Dataflow synthesis — This involves mapping a dataflow
depiction in models into a set of software processes,
and inter-process communication paths. This mapping
derives the execution order or schedule of the
processes executing on the processors. The
communication paths between software processes must
be setup such that the software process itself is unaware
of the location of other software processes that it is
communicating with. However, the mapping process
alone cannot enforce location-transparent
communication. It relies on some capabilities in the
runtime execution infrastructure in order to facilitate
this. The overview of the runtime system is described
in [14].

o Fault managers synthesis — This involves synthesizing,
code for fault-managers from the behavioral
specifications provided in models. The user specifies
the behavior using the tool with appropriate knowledge
of the whole system.

3.1 Fault Manager Code Synthesis

The Figure 5 shows the mapping of self adaptive
behavior language defined in the models into the code
which is linked to the runtime.



The following steps define the mapping algorithm:

1. For each fault manager (software) component
model in the dataflow models, an associated state
machine model that defines its mitigation
strategy is located. This state machine model
defines the behavior to be synthesized for each
fault manager.

2. Given the behavior, the set of defined states is
collected. In the above example, there are 2
distinct states: NOMINAL FM, and
REROUTE LINK. An enum construct is
generated in the source code.

3. Based on the trigger interface variables in the
state model, a function prototype is defined for
the state transition step function, with a
parameter for current state and each of the trigger
input & output variables. This function is used
to compute next states and to read & write input
and output messages. In the example, there is the
current state, “cs”, followed by three (3) inputs
and four (4) outputs.

4. Next, the body of the behavioral state transition
step function is defined. For each state, a case
segment is defined. Here, there are two case
entries, one per state.

5. Within the case, the code is generated to
implement the guard conditions, in the form of if
clauses. The example shows one guard
condition, if(det_fault).

= — o
- ) m eum(
NOMINAL_FM,
TNaBM_STAT,
BMFULL,

int FFM _behay_step(int cs
. void

v 3 “m_omd in
i . void *det_fault

‘enqueue_output (0, rm_msg_out);
Jeise
retum_buffer (1m msg_out);

s =REROUTE LINK;

}

case BM_FULL:
-

|

Figure 5. Mapping of the Model with Generated
Code

6. Within each of the if transition steps, the action
code is inserted. This is based on the action
attributes that the user specified when creating
the behavioral model. The action shows creation
of a message (rm_msg_out), followed by a

conditional transmission of the message to
another behavioral process.

7. Steps 4-6 are repeated for each state, guard, and
action specified in the model.

8. Steps 1-7 are repeated for each physical resource
in the models.

9. If'there are hierarchical models, then we have
nested switch case statements generated.

This generated code is compiled and linked with the
dataflow code generated to create a set of executable
models for the system. Resource models are used to
create configurations for the loader to install and initialize
the system with the generated executables.

4 Results and Experiments

The tools for modeling, analyzing, and synthesizing
large-scale, parallel, fault adaptive real-time systems have
been developed and prototyped using the Model-
integrated computing infrastructure at Vanderbilt
University.  These tools were used to model and
synthesize a scaled down representative prototype of
BTeV system. The prototype and some observations are
described below. The prototype contained 16 embedded
DSP processors and two PC workstation. These
processors were configured in an application-specific
topology to reflect the dataflow of the BTeV trigger
algorithms. Figure 2 shows this example. There are
approximately 20 concurrently executing processes, with
around 100 interconnections. As shown in the Figure 2
we can see there are 4 VME boards and each board has
four (4) DSP’s. Each hardware resource is referenced to
one of the software components.

Several  relatively  simple  behaviors  were
implemented. These behaviors ranged from a simple
replication of a fault status message up the hierarchy, to
analyzing a parameter and adjusting algorithm
characteristics. The behaviors took inputs from the
algorithm, the kernel, the user interface, and the hardware
monitoring devices. The actions taken by the behaviors
ranged from message formation for user notification,
simple algorithms, to resetting failed tasks.

The tools allowed full generation of all executable
code. The time to modify a behavior and implement it
across the array of processors was approximately 10
minutes. This represents a very large reduction in the
effort and time required to adapt the system behavior.

The modeling language was reviewed by
practitioners in the high energy physics community.
While some details will take training to become natural to
the system implementer, the basic concepts in the
modeling language were natural to the domain. Overall,
the physicists surveyed were encouraged by the results.

The prototype was demonstrated at Supercomputing 2003.



5 Acknowledgments

This work is supported by NSF under the ITR grant
ACI-0121658. The authors also acknowledge the
contribution of other RTES collaboration team members
at Fermi Lab, UIUC, Pittsburg, and Syracuse Universities.

6 References

[1] Laddaga R., “Active Software,” in Robertson, P., Shrobe,
H., Laddaga, R. (eds.): Self-Adaptive Software, LNCS
1936, Springer Verlag, February 2001

[2] Robertson P., “An Architecture for Self-Adaptation and its
Application to Aerial Image Understanding,” in Robertson,
P., Shrobe, H., Laddaga, R. (eds.): Self-Adaptive Software,
LNCS 1936, Springer Verlag, February 2001

[3] Osterwel L., and Clarke L., “Continous Self-Evaluation for
the Self-Improvement of Software,” in Robertson, P.,
Shrobe, H., Laddaga, R. (eds.): Self-Adaptive Software,
LNCS 1936, Springer Verlag, February 2001

[4] Sztipanovits J., “Engineering of Computer-Based Systems:
An Emerging Discipline”, Proceedings of the IEEE
ECBS’98 Conference, 1998.

[5] Nordstrom G., “Metamodeling — Rapid Design and
Evolution of Domain-Specific Modeling Environments”,
Proceedings of the IEEE ECBS *99 Conference, 1999.

[6] Bapty T., Neema S., Scott J., Sztipanovits J., Asaad S.,
“Model-Integrated Tools for the Design of Dynamically
Reconfigurable Systems”, VLSI Design, 10, 3, pp. 281-306,
2000.

[7] Agrawal A., Bakshi A., Davis J., Eames B., Ledeczi A.,
Mohanty S., Mathur V., Neema S., Nordstrom G., Prasanna
V., Raghavendra, C., Singh M., “MILAN: A Model Based
Integrated Simulation Framework for Design of Embedded

Systems”, Workshop on Languages, Compilers, and Tools
for Embedded Systems (LCTES), Snowbird, UT, June,
2001.

[8] Ledeczi A., Maroti M., Bakay A., Nordstrom G., Garrett J.,
Thomason IV C., Sprinkle J., Volgyesi P., “GME 2000
Users Manual (v2.0)”, Institute For Software Integrated
Systems, Vanderbilt University, December 18, 2001.

[9] Buttler J.N., et. al, “Fault Tolerant Issues in the BTeV
Trigger”, FERMILAB-Conf-01/427, December 2002.

[10] Kwan S., “The BTeV Pixel Detector and Trigger System”,
FERMILAB-Conf-02/313-E, December 2002.

[11] Avizienis A., Avizienis R., “An immune system paradigm
for the design of fault-tolerant systems”, Presented at
Workshop 3: Evaluating and Architecting Systems for
Dependability (EASY), in conjunction with DSN 201 and
ISCA 2001, 2001.

[12] Avizienis A., “Toward Systematic Design of Fault-Tolerant
Systems”, IEEE Computer, 30(4):51-58, April 1997.

[13] Harel D., “Statecharts: A Visual Formalism for Complex
Systems,” Science of Computer Programming, vol. 8, pp.
231-274, June 1987.

[14] Scott J., Neema S., Bapty T., Abbott B.,
“Hardware/Software Runtime Environment for
Dynamically Reconfigurable Systems”, ISIS-2000-06,
May, 2000.

[15] Bapty T., Scott J., Neema S., Sztipanovits J., “Uniform
Execution Environment for Dynamic Reconfiguration”,
Proceedings of the IEEE Conference and Workshop on
Engineering of Computer Based Systems, pp.181-187,
Nashville, TN, March, 1999.

[16] Z.T Kalbarczyk, R.K.Iyer, S.Bagchi, K.Whisnant,
“Chameleon: A software infrastructure for adaptive fault
tolerance,” IEEE Transactions on Parallel and Distributed
Systems, vol. 10, no. 6, pp.560-579, June 1999

[17] J.RumBaugh, I.Jacobson, and G.Booch, “The Unified
Modeling Language Reference Manual”, Addison-Wesley,
1998.



