
1

Rapid Property Specification and Checking for
Model-Based Formalisms

Daniel Balasubramanian, Gabor Pap,
Harmon Nine, Gabor Karsai

ISIS / Vanderbilt University, Nashville, TN 37212
Email: {daniel.a.balasubramanian, gabor.pap,
harmon.s.nine, gabor.karsai}@vanderbilt.edu

Michael Lowry, Corina Pasareanu, Tom Pressburger
NASA Ames Research Center, Moffett Field, CA 94035

Email: {michael.r.lowry, tom.pressburger,
corina.s.pasareanu}@nasa.gov

Abstract—In model-based development, verification techniques
can be used to check whether an abstract model satisfies a set
of properties. Ideally, implementation code generated from these
models can also be verified against similar properties. However,
the distance between the property specification languages and
the implementation makes verifying such generated code diffi-
cult. Optimizations and renamings can blur the correspondence
between the two, further increasing the difficulty of specifying
verification properties on the generated code. This paper de-
scribes methods for specifying verification properties on abstract
models that are then checked on implementation level code. These
properties are translated by an extended code generator into
implementation code and special annotations that are used by a
software model checker.

I. INTRODUCTION

Model-based development (MBD) is a software and system
design paradigm based on abstractions called models. Domain-
specific modeling languages (DSMLs) [1] provide the ability
to represent models that are specific to a particular problem
domain. Cast in this light, Matlab/Simulink [2] can be viewed
as a DSML for physical and embedded systems, as they allow
modeling the (dynamics of the) physical plant as well as the
behavior of its controller software. Once the model is created,
the system can be simulated, outputs observed, and the model
changed according to the traces provided by the simulation.

Simulation alone, however, cannot provide rigorous guaran-
tees about a model’s behavior. In order to prove exhaustively
that a model’s dynamic behavior always satisfies a set of
properties, some sort of verification [3] must be performed.
Typical properties include state reachability, deadlock-freedom
and a wide range of temporal properties. In recent years,
model-level verification tools have been developed that can
check models for such properties. While these tools play an
important role in MBD and can provide guarantees about a
model’s behavior, their use is often limited to a small portion
of a complex system, i.e. key properties and algorithms.

One of the key goals of MBD is to gradually refine abstract,
high-level models until they can be automatically synthesized

into an implementation that runs on a non-ideal computational
platform. However, one crucial problem is often ignored:
how can one verify that the synthesized implementation code
satisfies the same properties as the models from which it
was generated? Without verifying the implementation, the
guarantees provided by checking the abstract models are
lost. Checking or proving the correctness of the synthesis
(transformation) algorithms is an open problem. Further, if no
verification is performed on high-level models, then verifying
the implementation is the only way to prove properties about
the system.

The major difficulty in verifying model level properties on
implementation level code lies in the different levels of ab-
straction. Abstract models are developed by hand and designed
with readability in mind, while automatically generated code
can be difficult to read. Further, the correspondence between
model elements and their generated code is not obvious.
Renamings and optimizations make it difficult to understand
how a particular model element is represented in the generated
code. As a result, knowing where to place properties that are
to be verified becomes a challenge.

Another difficulty lies in the mismatch between the input
languages of verification tools used at the different levels of
abstraction. Individual verification tools typically each use
their own input language for defining properties, so that
properties checked at the model level must be rewritten in
a new syntax to be checked on the implementation level code.
This problem is exacerbated by the fact that code generators
typically rename model elements in the generated code, so
that, for instance, the names of variables in the generated
code are not known on the model level. Without knowing the
names of the variables, certainly verification properties cannot
be defined.

We present in this paper a method for specifying properties
on high-level models that are then used in the verification
of the generated, implementation level code. Properties are
written in an intuitive way, directly on the model elements.
As the model is translated into various intermediate forms and

978-1-4577-0660-8/11/$26.00 c© 2011 IEEE

2

SL/SF model
+ Code

generatorInput Output

Java code +

Software
model

checker
Generates

Verification
report

Contracts

Observer
automata

Verification
properties

Verification
properties

Translated

Property specification
methods

Fig. 1. Overview of framework. Verification properties can be specified using
observer automata or contracts.

ultimately into executable code, the user defined properties
are preserved and translated into implementation code and
annotations that are checked by a software model checker.
The translation is performed via a code generator that has been
extended to handle the extra information. The results of the
verification are then displayed to the user (in terms of the orig-
inal high level model). While we focus on Matlab/Simulink,
we believe that our method of defining properties on the model
level that are checked against a generated implementation can
be generalized and leveraged in other MBD tools as well. This
approach makes property-based verification an integral part of
the development workflow. Note that the framework enables
run-time verification in addition to model checking.

The remainder of the paper is organized as follows. Section
II gives an overview of our approach and background, includ-
ing a description of the tool-suite. Section III provides details
on how the user annotates Simulink models with properties.
Section IV presents an end-to-end example. We compare our
approach with related work in Section V and conclude in
Section VI.

II. OVERVIEW AND BACKGROUND

An overview of our approach is depicted in Figure 1 and
consists of the following steps: (1) a Simulink model is
defined, (2) the model is annotated with properties to verify,
(3) the code generator is invoked to produce executable code,
(4) the software model checker is executed on the code and
properties, (5) results about about the verification process are
reported.

In this paper, we ignore the first and third points (defining
the model and generating code) and instead concentrate on the
other steps. For details on this part of the framework, please
see [4]. In the work described in this paper we use a code
generator that produces restricted form Java code. The main
motivation for this choice of the target language was that the
software model checker used can work with Java programs.
The code generated by our toolchain is completely sequential
and does not use dynamic memory (after initialization), hence
it is suitable for embedded applications. The code is also
object-oriented (an increasing trend in embedded software):
subsystems are translated into Java classes that are instantiated
at initialization time. Our code generator actually uses a re-
targetable back-end, such that either Java or C code can be
produced from the same abstract syntax tree.

A. Property annotations

The second step in Figure 1 is annotating the Simulink
model with properties to verify on the generated code. Since
the development of model checking [5] in the early 1980s,
a number of specification languages have been invented to
formally define properties. Common ways of specifying these
properties include regular expressions and temporal logic, such
as LTL and CTL. However, the drawback to using temporal
logics for property specification is their steep learning curve
for industrial practitioners. Consequently, designers and de-
velopers will be less likely to use verification tools if they
must devote large amounts of time to learning a specification
language.

For this reason, we decided to take two approaches to
property specification. The first uses the pattern-based system
introduced in [6]. In that work, the authors studied a large body
of existing property specifications and found that the majority
of them were instances of a small set of parameterizable
patterns: reusable solutions to recurring problems.

Patterns are entered into our system using a custom interface
that we integrated directly into Simulink. After the parameters
have been entered, our interface generates an observer automa-
ton to represent am instance of that pattern. These observer
automata are Stateflow subsystems inserted in the Simulink
diagram that implement the logic of the specification described
by the pattern. They contain input signals corresponding to the
variables and events under observation, and the internal states
that implement the logic of property. Full details can be found
in Section III.

The second approach to property specification is based on
contracts and is similar to the idea of programming by contract
[7]. Programming by contract is a methodology for writing
programs that use interface specifications on software compo-
nents to define properties about their behavior. Typically, the
specification on a component includes three elements: prop-
erties that must hold in order to use the component correctly
(preconditions), properties that will hold when the component
is finished executing (postconditions), and properties that
must always be satisfied (invariants). We applied this idea
of contracts to specifying properties for Simulink subsystems.
On any subsystem, the user is allowed to write preconditions,
postconditions and invariants that must be satisfied by that
subsystem. During the code generation phase the contracts on
various subsystems are translated into annotations on methods
and classes implementing these subsystems in the generated
code. A thorough description is given in Section III.

B. Software model checking

Our generated code is verified using Java Pathfinder (JPF)
[8], a software model checker for Java. We chose JPF for two
reasons. First, our toolsuite was already configured to generate
Java code. Second, JPF provides libraries supporting a number
of verification features especially useful in our toolsuite: code
contracts, monitoring execution for exceptions and numerical
problems, as well as symbolic execution.

The code contract feature of JPF permits annotations for
preconditions, postconditions and invariants to be written

3

on classes and methods. JPF monitors these conditions at
runtime and reports any violations. This feature allows the
preconditions, postconditions and invariants that are defined on
the Simulink model elements to be translated to the generated
code in a straightforward manner by the code generator.

The symbolic execution [9] feature of JPF allows us to per-
form state reachability and test case generation. The symbolic
execution engine runs a program much like a normal program
execution, but does not assign a concrete value to program
input variables. Instead, input variables are left as symbolic
values. When input variables are used in a branching condition,
a constraint solver attempts to find values for the symbolic
variables that will allow both branches of the condition to be
taken. This idea is explained further in [9]. In this paper, we
do not concentrate on the symbolic execution aspect.

III. SPECIFICATION PATTERNS AND CONTRACTS

This section gives details on how properties are specified on
the model level and then translated into generated code. We
first describe the specification patterns, which can be attached
to the model using a custom interface or from a supplied
library. If the interface is used, a corresponding observer
automata is automatically generated from the specifications.
The interface can be used to insert basic properties, but to
describe more complex properties, the observer automata can
be compositionally defined using the supplied library. We also
describe the details of how contracts are written on the model
and then translated into annotations on the generated code.

A. Specification patterns

Property specification patterns describe commonly observed
requirements in a generalized manner. They capture a par-
ticular aspect of a system’s behavior as a sequence of state
configurations. Note that the specifications can be state-based
or event-based. In the discussion below we mention the state-
based form, but the same approach applies to events as well.

To illustrate, consider the property that throughout a sys-
tem’s execution the value of a certain variable should always
be greater than zero. There are two basic parts to this property
that commonly occur. The first tells when the property should
hold (in this case, at all times during execution), and the
second tells what condition should be satisfied during this time
(here, the variable should be greater than zero).

A property consists of precisely those two pieces: a scope
and a pattern. The scope defines when a particular property
should hold during program execution, and the pattern defines
the conditions that must be satisfied. There are five basic kinds
of scopes: global (the entire execution), before (execution
up to a given state), after (execution after a state), between
(execution from one state to another) and until (execution from
one state even if the second never occurs).

There are three categories of patterns: occurrence, order
and compound. The occurrence group contains the absence
(never true), universality (always true), existence (true at least
once) and bounded existence (true for a finite number of
times) patterns. The order group contains the response (a state
must be followed by another state) and the precedence (a

Pa#ern	

Error	
 State	

error_event	

end_event	
 [propertyOK	
 ==	
 false]	

Global	
 scope	

1	

2	

Pa#ern	

Error	
 State	
 [Before	
 &&	
 propertyOK	
 ==	
 false]	

Before	
 scope	

1	

Safe	
 State	

[Before	
 &&	
 propertyOK	
 ==	
 true]	

2	

Pa#ern	
 Error	
 State	

UnBl	
 scope	

IniBal	
 State	

[Before	
 &&	
 propertyOK	
 ==	
 true]	
 [AFer]	

4	

error_event	

1	

[Before	
 &&	
 propertyOK	
 ==	
 false]	

3	

end_event	
 [propertyOK	
 ==	
 false]	

2	

Fig. 2. Scope library.

state must be preceded by another state) patterns, and the
compound group contains the chain precedence, and chain
response patterns.

Dwyer et al. [6] have shown how these scopes and pat-
terns can be expressed in LTL, CTL, and other formalisms.
However, the property specification patterns can also be easily
expressed as parameterized observer automata, which is the
approach we take. Note that many specifications can be
added to a model and each one is translated into a separate
automaton. Additionally, the definition of a simple interface
allows the composition of the scope and pattern aspects of the
specification, represented as two distinct automata templates.
Furthermore, using the Stateflow language allows the observer
automata to be created inside Simulink diagrams.

The Simulink model extended with the observer automata
is then translated into the target language. Hence the gener-
ated, ’functional’ code will be augmented with the code that
implements the observer automata. Now the software model
checker can monitor and verify the execution of the entire
implementation, paying special attention to the error states and
properties specified in observer automata. As specifications are
translated into executable code, the distance between code-
level monitoring and software model checking and model-level
property specifications is reduced.

Figure 2 shows the automata for three of the five scopes.
We now briefly describe each of these.

The automaton for the global scope is shown at the top
of Figure 2. This scope indicates that a property should hold
during the entire system execution. Initially, the state labeled
“Pattern” is entered. There are two transitions from this state
to the state labeled “Error State”. The first is triggered by
an event named “error event”. This event is generated by an
enclosed property when that property has been violated. The
second transition is triggered by an event named “end event”
and a guard condition requiring the boolean value “proper-

4

Error State

Precedence pattern

Initial State
en: propertyOK = true

[P1]

P1 Encountered Safe State
en: propertyOK = true

[P2]

[P2]{propertyOK=false; error_event;}

1

2

Initial State
en: propertyOK = true [P1]{propertyOK = false; error_event;}

Error State

Absence pattern

Initial State
en: propertyOK = false [P1]

P1 Encountered
en: propertyOK = true

Existence pattern

Fig. 3. Pattern library.

tyOK” to be false. The “end event” is generated upon system
termination and the “propertyOK” variable is set to false by
the scope’s enclosed property if that property is violated. That
is, the second transition is taken if the system terminates and
the property enclosed by this scope has been violated.

The automaton for the before scope is shown in the middle
of Figure 2. This scope is used to express that a property
should hold before some other condition is met. In the Figure,
the event named “Before” is used to represent the condition.
Initially, the “Pattern” state is entered. If “end event” occurs
(the system terminates) and the enclosed property has been
violated (“propertyOK is false”) then the first transition is
taken and the “ErrorState” is entered. If the “Before” event
occurs and “propertyOK” is false, the second transition is
taken and “ErrorState” is entered. The state named “Safe
State” is only entered if the “Before” event occurs and the
enclosed property has not been violated (“propertyOK” is
true).

The until scope captures the requirement that some condi-
tion should hold from one state to another even if the second
condition never occurs, or stated differently, in between one
condition and a second, even if the second condition never
occurs. The bottom of Figure 2 shows the automaton for
this scope. The two variables named “Before” and “After”
are used to represent the two conditions in between which a
property should hold. Upon entry, “Initial State” is entered.
When the variable “After” becomes true, then the transition to
the “Pattern” state is taken. While in this state, the automata
is waiting for the property to happen before the second con-
dition is satisfied. When the property is satisfied, the variable
“propertyOK” becomes true. If before “propertyOK” becomes
true either the “Before” condition becomes true or system
execution ends (“end event” occurs), the transition to “Error
State” occurs and signals an error to the user. Otherwise, if
“propertyOK” is true (the property is satisfied) and the second
condition is also satisfied (“Before” is true), the transition back
to “Initial State” is taken, and the cycle repeats.

Figure 3 shows the automata for three of the patterns.
At the top of the Figure is the automaton for the existence
pattern. This pattern states that a condition (represented in
the automaton by the boolean variable “P1”) should occur
during a specified scope. When the “Initial State” is entered,

Property	

Error	
 State	

error_event	

end_event	
 [propertyOK	
 ==	
 false]	

1	

2	

[x	
 >	
 0]	

x	

Ini?al	
 State	

en:	
 propertyOK	
 =	
 false	

Safe	
 State	

en:	
 propertyOK	
 =	
 true	

Global	
 scope	
 Existence	
 paEern	

Fig. 4. Property describing that at some point, x should be greater than 0.
Scope states are white and patterns states are shaded.

the “propertyOK” variable is set to false, indicating that the
property is initially unsatisfied: P1 has not occurred. If “P1”
does become true, then the transition to “P1 Encountered” is
taken and “propertyOK” is set to true.

A simple pattern, absence, is shown in the middle portion
of Figure 3. This pattern states that a condition (represented
in the automaton by the boolean variable “P1”) should not
occur during a specified scope. When the “Initial State” is
entered, the “propertyOK” variable is set to true, indicating
that the property is initially satisfied: P1 has not occurred. If
“P1” does become true, then the transition to “Error State”
is taken,“propertyOK” is set to false and the “error event” is
emitted.

The automaton for the precedence pattern is at the bottom
of Figure 3. This captures the property that some condition
(“P2”) must be preceded by another condition (“P1”). Note
that in this automaton, the initial state sets the “propertyOK”
variable to true: the property is initially satisfied. If “P2” is true
before “P1”, that is, the condition denoted by “P2” happens
before the condition denoted by “P1” is met, then the transition
to “Error State” is taken, “propertyOK” is set to false, and
the “error event” is emitted. Otherwise, the overall precedence
pattern is satisfied.

Scopes and patterns are combined to form property specifi-
cations. Consider the example in Figure 4, which specifies the
following property: at some point during system execution, the
input variable “x” should be greater than 0. Stated differently,
throughout the entire system execution (i.e., global scope), x
should be greater than 0 at least once (i.e., existence property).
To define this property, the existence pattern shown in Figure 3
is inserted into the “Pattern” state of the global scope shown in
Figure 2. The difference is that the generic condition shown
as “P1” in the basic existence pattern is replaced with the
condition x > 0. Note that the “propertyOK” variable is set
by the pattern and its value is used by the scope.

Additionally, we developed a dedicated user interface that
uses dialog forms for inputing property specifications. The
dialogs capture both the kind of scope and pattern, as well as
the parameters needed to instantiate and compose them. The
user picks the scope and the pattern and enters the appropriate
conditions. A composed automaton that composes an instance
of both the scope and pattern is then automatically generated.
An example using these dialog forms is described in Section

5

Subsystem	

X	

Y	

Z	

Fig. 5. Contract example.

IV.

B. Contracts

The second method we use for describing verification prop-
erties is based on contracts. We extended Simulink with a
custom interface that allows the user to annotate any subsystem
with three additional items.

• Preconditions that the input signals to the subsystem must
satisfy.

• Postconditions that the output signals of the subsystem
must satisfy.

• Invariants that must always be satisfied by the subsystem.

Note that a subsystem translates into an executable function
that is called by some scheduler, periodically. Hence, the above
conditions and invariants can be checked during execution of
that function block.

Figure 5 shows an example of specifying contracts on a
subsystem block. The internal details of the subsystem are
not important, but rather serve to show how our approach
allows the complexities of certain elements to be ignored when
writing specifications. The subsystem in Figure 5 has two
inputs, x and y, and one output, z. Suppose the property we
wish to check is the following: either x is equal to 0 and y
is between 0 and 10, or x is equal to 1 and y is between 10
and 20. Suppose we also wish to check that if x is 0, then the
output z is greater than 0, and if x is 1, then the output z is
less than 0. These requirements are attached to the subsystem
using the dialog box as shown at the top of Figure 5.

The contracts are added to the subsystem model as specially
formatted descriptions (that are usually just unstructured text),
using XML-like syntax. The code generator parses these
descriptions, and if they are syntactically correct, it constructs
the properly formatted strings (with variable names rewritten

into their ’code’ equivalent) that are suitable for the software
model checker.

A Java implementation of the subsystem in Figure 5 that
is very similar to the code produced by our code generator is
shown in Listing 1. Note that in the contract, the inputs and
outputs of the subsystem are referred to by their name in the
model. This is an important part of our approach: the user
always refers to the model elements as they are written in the
model. No knowledge of the code generation process is needed
to write specifications. The contract specified in the model is
generated in the Java code as annotations that automatically
reference the correct variable names. These annotations are
used by the software model checker to monitor the code
execution.

Listing 1. Java implementation of the subsystem in Figure 5.
p u b l i c c l a s s Subsystem15 {

p r i v a t e i n t v a l u e 1 = 0 ;
p r i v a t e i n t v a l u e 2 = 0 ;

@Requires (‘ ‘ (x13 == 0 && y25 > 0 && y25 < 10) | |
(x13 == 1 && y25 > 10 && y25 < 20) ’ ’)

@Ensures (‘ ‘ (x13 == 0 && z65 > 0) | |
(x13 == 1 && z65 < 0) ’ ’)

p u b l i c vo id Main23 (i n t x13 , i n t y25 , i n t [] z65) {
v a l u e 1 = x13 ;
v a l u e 2 = y25 ;
. . .
/ / Code i m p l e m e n t i n g s u b s y s t e m l o g i c
. . .

}
}

IV. EXAMPLE

This section shows how our framework can be applied to
realistic models. The example we use is the Apollo Lunar
Module digital autopilot model, which is included with the
Matlab/Simulink distribution as an example. The full model
includes a dynamic model of the plant: the Apollo Lunar Mod-
ule, as well as a model of the Reaction Jet Controller (RJC) –
we focused on the embedded controller. A very high-level view
is shown in Figure 6. The RJC receives attitude measurements
and desired attitude values, and generates control signals to
activate yaw, pitch and roll thrusters.

A. Step 1: Define Property

The “Yaw Jets” output of the RJC block is a value from the
set -2, 0, 2, which indicates that the yaw thruster should have
a negative thrust, no thrust or a positive thrust, respectively.
Suppose we wish to verify the property that the “Yaw Jets”
output can never go directly from -2 to 2 or directly from
2 to -2: at least one output of 0 must always be found in-
between. Section III showed how a property like this could be
built manually using automata. Using the scope and pattern
automata as building blocks, one could define this property
directly in Stateflow.

As mentioned above, we have also developed a custom
extension to the Simulink environment that allows properties
to be entered in an easier way using dialog forms. These
dialogs decompose the patterns detailed in Section III-A: the
user selects a pattern, enters a scope and a property and the

6

equivalent automata is generated, including input ports. Our
first task is to decide which pattern we need to implement the
property that the “Yaw Jets” can never go directly from -2 to
2 or directly from 2 to -2. Part of the property states that we
do not want the value of “Yaw Jets” to be -2 during a certain
scope. The absence pattern fits this requirement, as it checks
to see that some condition never occurs.

The dialog form for the absence pattern is shown in Figure
7. This dialog guides the user through the process of defining
a property. After defining the condition that should never
hold (Command == -2), we define the scope during which
this condition should hold. In this example, we never want
Command to go directly from 2 to -2, so the condition that
Command should never be -2 should hold after Command is
equal to 2 and before Command is equal to 0. The property
that Command should never go directly from -2 to 2 is defined
in an analogous way using the absence pattern dialog.

B. Step 2: Connect generated automata

After entering the parameters in the dialog form, the ob-
server automaton monitoring the property is generated, as
shown in Figure 8. The states representing the scope portion of
the property are white, and the states representing the pattern
are shaded. The transition from the initial state is taken when
Command is 2, at which point we are “in scope” and want
to verify the absence of the condition that Command is -2
before it is 0. If the value of Command is -2 before it is 0,
the transition to the inner error state is taken, which sets the
“propertyOK” variable to false and emits the “error event”.
When “error event” is emitted, the outer transition to the error
state is taken and the automaton remains in this state. Note
that while the automaton is in scope, system termination (the
“end event”) will not cause the property to be violated as
long as Command has not been set to -2. The input parameter
for command is automatically generated, so the user must
connect the “Yaw Jets” signal to the automaton so that it
can be monitored. In Figure 6, the “Command Constraint”
and “Command Constraint2” automata have already been
connected to the “Yaw Jets” signal.

C. Step 3: Verification with JPF

The final step is to invoke the code generator and use JPF to
verify our properties. There are two ways JPF can check the
code for property violations. The first uses concrete inputs
provided by the user. If this is done, JPF will perform a
concrete system execution using those inputs and report any
property violations in the form of stack traces. The second
way JPF can check for property violations uses the symbolic
execution module. In this case, JPF will try to determine inputs
to the system that will cause properties to be violated. With
either method, property violations can be reported to the user
in the form of a stack trace showing the sequence of method
invocations that led to an error state.

V. RELATED WORK

In more traditional forms of software development, verifica-
tion is done in one of two ways. Either an abstract model of the

Fig. 6. High-level view of the Apollo Autopilot. The Command Constraint
automaton was automatically generated using the property defined in Figure
7. The second automaton was also automatically generated.

Fig. 7. Property dialog. The property says that after the input variable
“Command” becomes 2, it should never be equal to -2 before returning to 0.

Error	
 State	

Un+l	
 scope	

end_event	
 [propertyOK	
 ==	
 false]	

2	

Ini+al	
 State	

[Command	
 ==	
 0	
 &&	
 propertyOK	
 ==	
 true]	
 [Command	
 ==	
 2]	

4	

Ini+al	
 State	

en:	
 propertyOK	
 =	
 true	

[Command	
 ==	
 -­‐2]	
 {propertyOK	
 =	
 false;	
 error_event;}	

Error	
 State	

Absence	
 paJern	

error_event	

1	

[Command	
 ==	
 0	
 	
 &&	
 propertyOK	
 ==	
 false]	

3	

Command	

Fig. 8. Generated observer automaton implementing the property specified
in Figure 7. Scope states are white and pattern states are shaded.

7

software is created and verified, or the executable code itself is
verified. [10] discusses the ongoing trend towards placing the
verification efforts directly on the executable code rather than
on models. In MBD, however, one intentionally begins with
models and gradually refines them until they are synthesized
into the executable code, and ideally both artifacts can be
verified. Our approach eases the burden of both specifying
and checking properties on code generated during the MBD
process.

A number of tools are available for verifying Simulink/S-
tateflow models. Simulink Design Verifier [11] and Reactis
[12] are commercial tools for checking model properties.
[13] describes an approach that is based on hybrid automata:
models are translated from Simulink to a hybrid automata for-
malism and existing techniques for checking hybrid automata
can then be applied. Our approach is complimentary to these
methods and ensures the properties proved by these tools also
hold for the generated code.

Our approach to specifying properties through patterns is
based on the work of Dwyer et al. in [6]. The pattern
library described there contains a general description along
with mappings into multiple formalisms, including LTL, CTL
and quantified regular expressions. Our implementation uses
a dialog forms to chose and configure simple patterns from
which observer automata are generated, and includes a library
of observer automata for individual scopes and properties from
which more complex patterns can be defined.

Runtime monitoring [14] is a related area in which formally
specified properties are typically translated into executable
code that is used to check program properties during program
execution. Recent work in this area includes optimizing such
monitors through static analysis techniques [15]. Our approach
translates properties specified using observer automata into
executable code that is checked by a software model checker
and translates contracts on model elements into annotations
that are used by the model checker.

VI. CONCLUSION

Checking model level properties on implementation code
is a useful approach for practical model-driven development.
In this paper, we have shown how relevant properties can
be specified on the model level and then translated into
implementation code that can be verified with a software
model checker. Our approach is a pragmatic realization of the
work described in [6], in the context of the Simulink/Stateflow
environment. We have shown how the specification patterns
can be instantiated from observer automata templates for
scopes and properties and how subsystem blocks can be
annotated with pre-, post-conditions, and invariants that are
monitored by the software model checker. We have shown the
use of the approach on a realistic example.

Our approach allows two ways for specification: contracts
and property specifications based on patterns (that are trans-
lated into observer automata). For designers of embedded sys-
tems two extensions would be very useful: (1) specifying real-
time properties, and (2) dealing with concurrency. Translated
Simulink subsystems are typically executed periodically, with

a fixed rate. Timing properties can be related to a single
execution run (i.e. the worst-case execution time of a function
block), as well as the temporal properties of the system over
multiple execution runs (e.g. the system reacts to a triggering
event within a bounded number of execution runs). Translated
Simulink subsystems are also completely sequential; they are
usually translated to functions in an implementation language.
In order to run them on an execution platform, they have
to be embedded into OS processes, and their communication
and synchronization implemented outside of Simulink. Hence,
we need to model these embeddings, and how the threads
containing the function blocks communicate and synchronize.
These topics are the subject of on-going research.

VII. ACKNOWLEDGMENTS

The work described in this paper has been supported by
NASA under Cooperative Agreement NNX09AV58A. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Aeronautics and
Space Administration. The authors would also like to thank
Michael Whalen for valuable discussions and feedback.

REFERENCES

[1] Á. Lédeczi, A. Bakay, M. Maroti, P. Völgyesi, G. Nordstrom, J. Sprinkle,
and G. Karsai, “Composing domain-specific design environments,” IEEE
Computer, vol. 34, no. 11, pp. 44–51, 2001.

[2] MATLAB, version 7.10.0 (R2010a). Natick, Massachusetts: The
MathWorks Inc., 2010.

[3] G. J. Holzmann and R. Joshi, “Model-driven software verification,” in
SPIN, 2004, pp. 76–91.

[4] J. Porter, P. Völgyesi, N. Kottenstette, H. Nine, G. Karsai, and J. Szti-
panovits, “An experimental model-based rapid prototyping environment
for high-confidence embedded software,” in IEEE International Work-
shop on Rapid System Prototyping, 2009, pp. 3–10.

[5] E. M. Clarke, “The birth of model checking,” in 25 Years of Model
Checking, 2008, pp. 1–26.

[6] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in ICSE, 1999, pp. 411–420.

[7] B. Meyer, Object-Oriented Software Construction, 1st editon. Prentice-
Hall, 1988.

[8] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda, “Model
checking programs,” Automated Software Engineering (ASE), vol. 10,
no. 2, pp. 203–232, 2003.

[9] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385–394, 1976.

[10] G. J. Holzmann, “Trends in software verification,” in FME, 2003, pp.
40–50.

[11] “Mathworks Inc. Simulink Design Verifier,”
http://www.mathworks.com/products/sldesignverifier/.

[12] “Reactive Systems, Inc.” http://www.reactive-systems.com/.
[13] R. Alur, A. Kanade, S. Ramesh, and K. C. Shashidhar, “Symbolic anal-

ysis for improving simulation coverage of simulink/stateflow models,”
in Proceedings of the 8th ACM international conference on Embedded
software, ser. EMSOFT ’08. New York, NY, USA: ACM, 2008, pp.
89–98.

[14] S. Sankar and M. Mandal, “Concurrent runtime monitoring of formally
specified programs,” IEEE Computer, vol. 26, no. 3, pp. 32–41, 1993.

[15] E. Bodden, L. J. Hendren, and O. Lhoták, “A staged static program
analysis to improve the performance of runtime monitoring,” in ECOOP,
2007, pp. 525–549.

