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Abstract

Multi-module Cyber-Physical Systems (CPSs), such as satellite clusters, swarms of Unmanned Aerial Vehicles (UAV), and
fleets of Unmanned Underwater Vehicles (UUV) are examples of managed distributed real-time systems where mission-critical
applications, such as sensor fusion or coordinated flight control, are hosted. These systems are dynamic and reconfigurable, and
provide a “CPS cluster-as-a-service” for mission-specific scientific applications that can benefit from the elasticity of the cluster
membership and heterogeneity of the cluster members. Distributed and remote nature of these systems often necessitates the use
of Deployment and Configuration (D&C) services to manage lifecycle of software applications. Fluctuating resources, volatile
cluster membership and changing environmental conditions require resilience. However, due to the dynamic nature of the
system, human intervention is often infeasible. This necessitates a self-adaptive D&C infrastructure that supports autonomous
resilience. Such an infrastructure must have the ability to adapt existing applications on the fly in order to provide application
resilience and must itself be able to adapt to account for changes in the system as well as tolerate failures.

This paper describes the design and architectural considerations to realize a self-adaptive, D&C infrastructure for CPSs.
Previous efforts in this area have resulted in D&C infrastructures that support application adaptation via dynamic re-deployment
and re-configuration mechanisms. Our work, presented in this paper, improves upon these past efforts by implementing a self-
adaptive D&C infrastructure which itself is resilient. The paper concludes with experimental results that demonstrate the
autonomous resilience capabilities of our new D&C infrastructure.
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I. INTRODUCTION

Cyber-Physical Systems (CPS) are a class of distributed,
real-time and embedded systems that tightly integrate the
cyber dimension with the physical dimension whereby the
physical system and its constraints control the way the cyber
infrastructure operates and in turn the latter controls the phys-
ical objects. Fractionated spacecraft, swarms of Unmanned
Aerial Vehicles (UAVs) and fleets of Unmanned Underwater
Vehicles (UUVs), represent a new class of highly dynamic,
cluster-based, distributed CPSs which represents the target
domain of our work presented in this paper. These systems
often operate in unwieldy environments where (1) resources
are very limited, (2) the dynamic nature of the system results
in ever-changing cluster properties, such as membership, (3)
failures and fluctuation in resource availabilities is common,
and (4) human intervention to address these problems is
rarely feasible. Owing to these traits, the system property
of resilience is increasingly becoming a critical aspect for
CPSs.

A resilient system is defined as a system that is capa-
ble of maintaining and recovering its functionality when
faced with (1) expected as well as unexpected faults, (2)
changes in the system’s environment which, at times, can
result in failures due to the environment either producing
unexpected inputs or not reacting to outputs as expected,
or (3) errors encountered during planned system updates. In
other words, a resilient system can adapt to both internal
and external anomalies by modifying its normal behavior
while still remaining functional. In the case of dynamic
distributed systems, human intervention is extremely limited
therefore resilience should be autonomic. Consequently, the
system should be self-adaptive [1] for which it requires an
adaptation engine capable of maintaining and recovering the
system’s functionality by (1) adapting applications hosted on
the system, and (2) adapting itself as well as other services
provided by the system.

To realize a self-adaptive CPS, we first need to understand
how these systems and their applications are architected
because any solution for resilience must seamlessly integrate
with the system architecture. In this context, we observe that
applications for CPSs are increasingly being designed using
the methods of Component-Based Software Engineering
(CBSE) [2], where applications are realized by composing,
deploying and configuring software components in a tar-

get environment. Deployment and Configuration (D&C) of
component-based software is a well studied field of research
that has lead to realization of Deployment and Configuration
(D&C) infrastructures that helps system designers deploy
and configure large-scale component-based applications. In
general, a D&C infrastructure is responsible for managing
an application’s lifecycle which includes initial deployment
and configuration of the application as well as run-time
modifications.

Since the D&C capability is a key artifact of any
component-based system, we surmise that autonomous re-
silience in CPSs can be achieved by enhancing the D&C
infrastructure so that it can perform the role of the adaptation
engine. In turn, this means that the D&C infrastructure
should manage the application lifecycle as well as handle
application failures and itself be resilient via self-adaptive
capabilities. These requirements have been identified in our
previous work [3]. However, existing D&C infrastructures do
not yet support these requirements. Even though some solu-
tions address the requirement for a D&C infrastructure that
is capable of application adaptation via hot deployment [4],
these solutions are not self-adaptive.

This paper overcomes limitations of existing solutions
by presenting a novel solution to realize a self-adaptive
D&C infrastructure to manage component-based applications
for CPSs. The primary novelty of our work presented in
this paper lies in a new D&C infrastructure which is self-
adaptive and therefore supports autonomous resilience. We
have identified the following as contributions of this paper:

o« We present the key challenges in achieving a self-
adaptive, D&C infrastructure for highly dynamic CPSs,

e« We present an architecture for a self-adaptive D&C
infrastructure for component-based applications that ad-
dresses these key challenges, and

o We present experimental results to demonstrate appli-
cation adaptability as well as self-adaptive capability of
our new D&C infrastructure.

The remainder of this paper is organized as follows:
Section II presents previous work related to this paper and
explains why our approach is different; Section III describes
the problem at hand alluding to the system model and the key
challenges in realizing a self-adaptive D&C infrastructure;
Section IV presents detailed description of our work by
describing the overall architecture of our solution, and we



also describe how our solution addresses aforementioned
challenges; Section V presents experimental results; finally,
Section VI provides concluding remarks and alludes to future
work.

II. RELATED WORK

Our work presented in this paper is related to the field
of self-adaptive software systems for which a research
roadmap has been well-documented in [5]. Our work falls
under the general umbrella of self-adaptive systems as high-
lighted in the roadmap and implements all steps in the
collect/analyze/decide /act loop.

In this section we compare our work specifically with
existing efforts in the area of distributed software deploy-
ment, configuration, and adaptivity. These existing efforts
can be differentiated into two perspectives. The first being
the existing research done in achieving D&C infrastructure
for component-based application; and the second being the
variety of work done in the field of dynamic reconfiguration
of component-based applications.

A. Deployment and Configuration Infrastructure

Deployment and configuration of component-based soft-
ware is a well-researched field with existing works pri-
marily focusing on D&C infrastructure for grid computing
and Distributed Real-time Embedded (DRE) systems. Both
DeployWare [6] and GoDIET [7] are general-purpose de-
ployment frameworks targeted towards deploying large-scale,
hierarchically composed, Fractal [8] component model-based
applications in a grid environment. However, both of these
deployment frameworks lack autonomous resilience since
neither of them support application adaptation nor self-
adaptation.

The Object Management Group (OMG) has standardized
the Deployment and Configuration (D&C) specification [9].
Our prior work on the Deployment And Configuration En-
gine (DAnCE) [10], [11] describes a concrete realization of
the OMG D&C specification for the Lightweight CORBA
Component Model (LwCCM) [12]. LE-DAnCE [11] and F6
DeploymentManager [13] are some of our other previous
works that extends the OMG’s D&C specification. LE-
DAnCE deploys and configures components based on the
Lightweight CORBA Component Model [12] whereas the F6
Deployment Manager does the same for components based
on F6-COM component model [14]. The F6 Deployment
Manager, in particular, focused on the deployment of real-
time component-based applications in highly dynamic DRE
systems, such as fractionated spacecraft. However, similar
to the work mentioned above, these infrastructures also lack
support for application adaptation and D&C infrastructure
adaptation.

B. Dynamic Re-configuration

A significant amount of research has been conducted in
the field of dynamic reconfiguration of component-based
applications. In [15], the authors present a tool called Planit
for deployment and reconfiguration of component-based ap-
plications. Planit uses Al-based planner, to be more specific

- temporal planner, to come up with application deployment
plan for both - initial deployment, and subsequent dynamic
reconfigurations. Planit is based on a sense-plan-act model
for fault detection, diagnosis and reconfiguration to recover
from run-time application failures. Both these approaches
are capable of hot deployment, that is, they both support
dynamic reconfiguration; and therefore support application
adaptation. However, neither of them supports a resilient
adaptation engine.

Our prior work on the MADARA knowledge and rea-
soning engine [16] has focused on dynamic reconfiguration
of DRE applications in a cloud environment. This work
focuses on optimizing initial deployment and subsequent
reconfiguration of distributed applications using different
pluggable heuristics. Here, MADARA itself is used as an
adaptation engine, however, it does not focus on resilience
and therefore does not support self-adaptability.

Similarly, results presented in [17], [18], [19], [20] all
support application adaptation but not resilience of the
adaptation engine itself. Another work presented in [19],
supports dynamic reconfiguration of applications based on
J2EE components. In [20], the authors present a framework
that supports multiple extensible reconfiguration algorithms
for run-time adaptation of component-based applications.

Finally, in [21], the authors present a middleware that
supports deployment of ubiquitous application components
that are based on Fractal component model, in dynamic
network. This work also supports autonomic deployment and
therefore run-time application adaptation, but does not focus
on resilience of the adaptation engine.

III. PROBLEM DESCRIPTION

This section describes the problem at hand by first pre-
senting the target system model. Second, we present the
Deployment and Configuration (D&C) model. Third, we
present the fault model related to system model. Finally,
we describe the problem of self-adaptation in context of the
D&C infrastructure.

A. CPS System Model

The work described in this paper assumes a distributed
CPS consisting of multiple interconnected computing nodes
that host distributed applications. For example, we consider
a distributed system of fractionated spacecraft [13] that hosts
mission-critical component-based applications with mixed
criticality levels and security requirements. Fractionated
spacecraft represents a highly dynamic CPS because it is a
distributed system composed of nodes (individual satellites)
that can join and leave a cluster at any time resulting in
volatile group membership characteristics.

A distributed application in our system model is a graph
of software components that are partitioned into processes’
and hosted within a “component” server. This graph is then
mapped to interconnected computing nodes. The interaction
relationships between the components are defined using

'Components hosted within a process are located within the same address
space



established interaction patterns such as (a) synchronous and
asynchronous remote method invocation, and (b) group-
based publish-subscribe communication.

B. Deployment and Configuration Model

To deploy distributed component-based applications *
onto a target environment, the system needs to provide a
software deployment service. Since we are considering a
highly dynamic CPS that operates in resource-constrained
environments and has severely limited availability for human
intervention via remote accessi, we require that the software
deployment service be able to adapt itself when faced with
failures. In other words, it should be self-adaptive and
therefore support autonomous resilience.

A Deployment and Configuration (D&C) infrastructure
serves this purpose; it is responsible for instantiating ap-
plication components on individual nodes, configuring their
interactions, and then managing their lifecycle. The D&C
infrastructure should be viewed as a distributed system com-
posed of multiple deployment entities, called Deployment
Managers (DM), with one DM residing on each node.

OMG’s D&C specification [9] is a standard for deploy-
ment and configuration of component-based application.
Our prior work on the Locality-Enabled Deployment And
Configuration Engine (LE-DAnCE) [11] is an open-source
implementation of this specification. As shown in Figure 1,
LE-DAnCE implements a very strict two-layered approach
for software deployment. A single orchestrator, i.e. the
Cluster Deployment Manager (CDM) controls cluster-wide
deployment process by coordinating deployment activities
amongst different Node Deployment Managers (NDMs).
Similarly, a NDM controls node-specific deployment process
by instantiating required component servers, which in turn
creates and manages application components.
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Fig. 1. Orchestrated Deployment Approach in LE-DAnCE [11]

LE-DAnCE, however, is not self-adaptive and it does not
support run-time application adaptation as well. Therefore,

2 Although we use the component model described in [12], our work is not
constrained by this choice and can be applied to other component models
as well

3For instance, a satellite cluster may be in range of a ground station for
only 10 minutes during every 90 minute orbit
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our work presented in this paper modifies various aspects of
LE-DANCE in order to achieve a D&C infrastructure that (1)
is capable of self-adaptation in order to support autonomous
resilience, and (2) supports run-time application adaptation.

C. CPS Fault Model Related to D&C

Failure can be defined as a loss of functionality in a
system. The goal of a fault management system is to ensure
that subsystem or component-level faults do not lead to loss
of system functionality, i.e. a failure; for an unacceptable
length of time. The system is expected to recover from a
failure, and the threshold on time to recovery is typically a
requirement on the system. Recovering from failures involve
adapting the failed subsystem such that its functionality is
restored. For example in software intensive systems this
process primarily involves adaptation of applications that are
deployed in, and services that are provided by, the failed
subsystem.

Application adaptation can be viewed in three different
dimensions: (1) resource allocation adaptation, (2) structural
adaptation, and (3) state/attribute adaptation. Resource al-
location adaptation refers to the adaptation scheme which
changes the location of application components. It involves
actions such as migration of application components from
one component server to another or from one physical node
to another. Our solution presented in this paper uses this ap-
proach. Structural adaptation is another application adapta-
tion scheme, which involves switching between components
that provide the same functionality. State/ attribute adap-
tation is an application adaptation scheme, which involves
making changes to a component’s state or its attributes. This
approach was used in one of our previous works [22].

In the CPSs under consideration, we observe that in
general the subsystem failures can be categorized as either
infrastructure failures or application failures.

Infrastructure failures are failures that arise due to faults
affecting a system’s (1) network, (2) participating nodes, or
(3) processes that are running in these nodes. As shown in
Figure 2, there exists a causality between the three different
kinds of infrastructure failures. To be more specific, network
failures can be perceived as having caused all nodes that
are part of the network to have failed since those nodes
become unreachable after failure, and node failure causes
all the processes running on that node to fail. However, a
process can fail without its host node failing and a node
can fail due to reasons other than network separation. In our
work, since the D&C engine uses infrastructural elements of
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the CPS that can fail, the problem boils down to making the
D&C engine self-adaptive thereby supporting autonomous
resilience. Usually, infrastructure failures can be classified
as primary failures.

Application failures are failures pertaining to the applica-
tion itself. We assume that application components have been
thoroughly tested before deployment and therefore classify
application failures as secondary failures that are caused due
to infrastructure failures. Some environmental changes could
also lead to application failures, where the changes in the
environment can cause an application to receive unexpected
input or the environment might not react, as expected, to an
application’s output. Figure 2 presents a failure propagation
graph of our failure model that illustrates how failures may
cascade through the system.

D. Problem Statement

For the prescribed system and fault model, the D&C
infrastructure should be capable of self-adaptation to tolerate
the infrastructure failures and to manage application failures.
Conceptually, a self-adaptive infrastructure can be modeled
as a feedback control loop that observes the system state
and compensates for disturbances in the system to achieve a
desired behavior, as shown in Figure 3.

To find similarities with the traditional self-adaptive loop
and the system under discussion, consider that a failure in the
infrastructure can be considered a disturbance. This failure
can be detected by behavior such as ‘node is responding to
pings’ (indicating there is no infrastructure failure) or not.
Once the failure has been detected, the loss of the func-
tionality needs to be restored by facilitating reconfiguration,
e.g. re-allocating components to a functioning node, etc. The
presence of the controller and its actuation ability enables
the self-adaptive property needed of an autonomous resilient
system.

IV. SELF-ADAPTIVE D& C INFRASTRUCTURE

Figure 4 shows the outline of our solution. Infrastructure
failures are detected using the Group Membership Monitor
(GMM). Section IV-A describes, in detail, how the GMM
works. Application failure detection is outside the scope of
this paper, however, we refer readers to our earlier work [22]
in this area. The controller is in fact a collection of de-
ployment managers working together as an adaptation engine
to restore functionality when failures are detected. Specific
actuation commands are redeployment actions taken by the
deployment managers.
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Fig. 4. Self-adaptive Deployment and Configuration Architecture.

We discuss the specifics of this adaption engine next. Then
we present the key challenges in realizing the self-adaptive
properties for such an architecture. Finally, we describe how
our approach is addressing these challenges.

A. An Architecture for Self-adaptive D&C

Figure 5 presents the architecture of our self-adaptive
D&C infrastructure. Each node consists of a single Deploy-
ment Manager (DM) and collection of these DMs forms the
overall D&C infrastructure. Our solution D&C infrastructure
uses a choreographed approach to D&C of applications. This
results in an infrastructure that supports distributed, peer-to-
peer application deployment, where each node controls its
local deployment process.

Each DM, if required, spawns one or more Component
Servers (CSs). These CSs are processes that are responsible
for managing lifecycle of application components. When
compared to the architecture of existing D&C infrastructures
like DAnCE and LE-DAnCE (See Figure 1), we can ob-
serve that this architecture lacks a central orchestrator as it
follows a choreographed approach for software deployment
and configuration where DMs are independent and use a
publish/subscribe middleware to communicate with each
other.

In our architecture, we use GMM for two things - (1)
maintaining up-to-date group member information, and (2)
detecting failure via periodic heartbeat monitoring mech-
anism. Failure detection aspect of GMM relies on two
important parameters - heartbeat period and failure monitor-
ing period. These parameters are configurable. Configuring
heartbeat period allows us to control how often each DM
assert their liveliness, whereas configuring failure monitoring
period allows us to control how often each DM triggers
their fault monitoring mechanism and what is the worst case
latency when a missed heartbeat will be detected.

For a given failure monitoring period, lower heartbeat
period results in higher network traffic but lower failure
detection latency, whereas higher heartbeat period results in
lower network traffic but higher failure detection latency.
Tuning these parameters appropriately can also enable the
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architecture to tolerate intermittent failures where a few
heartbeats are only missed for a few cycles and are estab-
lished later. This can be done by making the fault monitoring
window much larger compared to the heart beat period.
Figure 6 presents an event diagram demonstrating a three
node deployment process of our new D&C infrastructure.
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Fig. 6. A Three-node Choreographed Deployment

As seen from the figure, an application deployment is
initiated by submitting a global deployment plan to one
of the three DMs in the system. This global deployment
plan contains information about different components (and
their implementation) that make up an application. It also
contains information about how different components should
be connected. Once this global deployment plan is received
by a DM, that particullar DM becomes the deployment
leader * for that particular deployment plan. Two different

4A deployment leader is only responsible for initiating the deployment
process for a given deployment plan by analyzing the plan and allocating
deployment actions to other DMs in the system. The deployment leader is
not responsible for other cluster-wide operations such as failure mitigation;
these cluster-wide operations are handled by a cluster leader.

global deployment plans can be deployed by two different
deployment leaders; we do not have a static orchestrator that
governs D&C of different applications.

Deployment and configuration in the choreographed ap-
proach follows a multi-staged approach. Table I lists the
different D&C stages in our approach. The INITIAL stage
is where a deployment plan gets submitted to a DM and
ACTIVATED stage is where the application components in
the deployment plan is active.

B. Challenges

To correctly provide self-adaptive choreographed D&C
services to a CPS cluster, the D&C infrastructure must
resolve a number of challenges that are not well addressed
by traditional orchestrated deployment approaches. These
challenges are described below referring to the desired self-
adaptive capability shown in Figure 7. This figure illustrates
the desired steps when there is a node failure. For example,
in the case of scenario presented in Figure 6 where DM-
1 is the deployment leader as well as the cluster leader, if
we assume that node-2 fails at some point during deployment
process, it implies that DM-2 has failed too. This DM failure
is detected by other DMs and in order to handle this failure
the D&C infrastructure, which now only consists of DM-1
and DM-2, needs to self-adapt.
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1) Challenge 1: Distributed Group Membership: Recall
that the CPS domain illustrates a highly dynamic environ-
ment in terms of resources that are available for application
deployment: nodes may leave unexpectedly as a result of
a failure or as part of a planned or unplanned partitioning
of the cluster, and nodes may also join the cluster as they
recover from faults or are brought online. To provide resilient
behavior, DMs in the cluster must be aware of changes in
group membership, i.e., they must be able to detect when
one of their peers has left the group (either as a result of a
fault or planned partitioning) and when new peers join the
cluster.

In our example, shown in figure 6, if one out of three
node fails at any point, then the DMs in the remaining
two nodes should be able to detect this failure based on



TABLE I

D&C STAGES

Stage Description

INITIAL (1) Global deployment plan is provided to one of the DMs.

(2) DM that is provided with a global deployment plan becomes the leader DM and loads that deployment plan
and stores it in a binary format.

PREPARING | (1) Plan loaded in previous stage is split into node-specific plans and published to the distributed data space
using pub/sub middleware.

(2) Node-specific plans published above are received by respective DMs, which in turn further split the node-
specific plans into component server (CS)-specific plans.

STARTING (1) CS-specific plans created in previous stage are used to create CSs (if required) and components.

(2) For components that provide service via a facet, the DM will publish its connection information so that other
components that require this service can connect to it using their receptacle. This connection however is not
established in this stage.

(3) In this stage, barrier synchronization is performed to make sure that no individual DMs can advance to the
next stage before all of the DMs have reached this point.

FINISHING (1) Components created in the previous stage are connected (if required). In order for this to happen, the
components that require a service use connection information provided in the previous state to make facet-
receptacle connections.

ACTIVATING | (1) Synchronization stage to make sure all components are created and connected (if required) before activation.

ACTIVATED (1) Stage where a deployment plan is activated by activating all the related components.

(2) At this point all application components are running.

TEARDOWN | (1) De-activation stage.

group membership information and they must collaborate to
perform a failure recovery mechanism by adapting the D&C
infrastructure as shown in Figure 7. Section IV-C.1 describes
our solution to address this challenge.

2) Challenge 2: Leader Election: As faults occur in CPSs,
a resilient system must make definitive decisions about the
nature of that fault and the best course of action necessary
to mitigate and recover from that fault. Since CPS clusters
often operate in mission- or safety-critical environments
where delayed reaction to faults can severely compromise
the safety of the cluster, such decisions must be made in a
timely manner. In order to accommodate this requirement,
the system should always have a cluster leader that will be
responsible for making decisions and performing other tasks
that impact the entire clusteri. However, a node that hosts
the DM acting as the cluster leader can fail at any time;
in this scenario, the remaining DMs in the system should
decide amongst themselves regarding who the new cluster
leader should be. This process needs to be facilitated by a
leader election algorithm.

Again, going back to our example shown in figure 6 where
DM-1 is the cluster leader and node-2 fails causing DM-2 to
fail, there is no requirement for electing a new leader since
DM-1 is alive and therefore can handle failure mitigation
process by redeploying application parts affected by node-
2 failure. However, if DM-1 fails instead of DM-2 then,
DM-2 and DM-3 should be able to run the leader election
algorithm and elect, amongst themselves, a new leader who

can then handle the failure mitigation process. Section IV-C.2

describes our solution to address this challenge.

5Achieving a consensus-based agreement for each adaptation decision
would likely be inefficient and violate the real-time constraints of the cluster

3) Challenge 3: Proper Sequencing of Deployment: Ap-
plications in CPS may be composed of several cooperating
components with complex internal dependencies that are
distributed across several nodes. Deployment of such an
application requires that deployment activities across several
nodes proceed in a synchronized manner. For example,
connections between two dependent components cannot be
established until both components have been successfully in-
stantiated. Depending on the application, some might require
stronger sequencing semantics whereby all components of
the application need to be activated simultaneously.

In our example scenario shown in figure 6, we require
two synchronization points. The first one to make sure that
all components of an application are created before the D&C
infrastructure tries to establish connections between compo-
nents that require a service and components that provide
the service. We require the second synchronization point
to make sure all components of an application is activated
simultaneously. Section IV-C.3 describes our solution to
address this challenge.

4) Challenge 4: D&C State Preservation: Nodes in a CPS
may fail at any time and for any reason; a D&C infrastructure
capable of supporting such a cluster must be able to recon-
stitute the portions of the distributed application deployed
on the failed node. Supporting self-adaptation requires the
D&C infrastructure to keep track of the global system state,
which consists of (1) component-to-application mapping, (3)
component-to-implementation mappingi, (2) component-to-
node mapping, (3) inter-component connection information,
(4) component state information, and (5) the current group

%A component could possibly have more than one implementation avail-
able.



membership information. Such state preservation is espe-
cially important for a newly elected cluster leader.

In our example, since DM-1 is the cluster leader, it is
responsible for determining the parts of application that were
previously deployed by DM-2 on node-2 and redeploy them
to a healthy node (node-3). Section IV-C.4 describes our
solution to address this challenge.

C. Addressing Self-adaptive D&C Challenges

We now discuss how our architecture resolves the key
challenges identified in Section IV-B.

1) Resolving Challenge 1: Distributed Group Member-
ship: To support distributed group membership, our solution
requires a mechanism that allows detection of joining mem-
bers and leaving members. To that end our solution uses
a discovery mechanism to detect the former and a failure
detection mechanism to detect the latter described below.

Discovery Mechanism: Since our solution approach re-
lies on an underlying pub/sub middleware, the discovery
of nodes joining the cluster leverages existing discovery
services provided by the pub/sub middleware. To that end
we have used OpenDDS (http://www.opendds.org) — an open
source pub/sub middleware that implements OMG’s Data
Distribution Service (DDS) specification [23]. To be more
specific, we use the Real-Time Publish Subscribe (RTPS)
peer-to-peer discovery mechanism supported by OpenDDS.

Failure Detection Mechanism: To detect the loss of ex-
isting members, we need a failure detection mechanism that
detects different kinds of failures described in Section III-
C. In our architecture this functionality is provided by the
GMM. GMM residing on each node uses simple heartbeat-
based protocol to detect DM (process) failure. Recall that
any node failure, including the ones caused due to network
failure, results in the failure of its DM. This means that our
failure detection service uses the same mechanism to detect
all three different classes of infrastructure failures.

Upon failure detection, as shown in Figure 7, only the
cluster leader takes recovery action which involves redeploy-
ment of application portion that was previously deployed
in the failed node. In our current implementation, the lead
DM determines redeployment location by checking for nodes
that do not have any previously deployed applications. How-
ever, more advanced heuristics could be used to determine
redeployment location based on different metrics such as
available resources and application collocation requirements.
We identify MADARA [16] as a tool that could be used to
implement these advanced heuristics since it is a distributed
knowledge sharing and reasoning middleware.

2) Resolving Challenge 2: Leader Election: Implement-
ing a robust leader election algorithm is part of our future
work. Our current implementation does not include the
notion of a cluster leader; we only have the notion of
deployment leaders where the system can only have one
deployment leader at a given time. A DM that is provided
with a deployment plan becomes the deployment leader for
that plan and two different deployment plans can be deployed
by two different deployment leaders. We also assume that a

deployment leader doesn’t fail since it is the only DM in
the system that stores the deployment plan. We can easily
overcome this particular restriction by storing redundant
copies of deployment plans as further explained in Section
I !_C,é.

One of our immediate future goal is to implement a robust
leader election algorithm such that the D&C infrastructure
can handle deployment leader failures. To that end, we are
evaluating and extending existing algorithms [24], [25] to
suit our requirements.

3) Resolving Challenge 3: Proper Sequencing of De-
ployment: Our D&C infrastructure implements deployment
synchronization using a distributed barrier synchronization
algorithm. This mechanism is specifically used during the
STARTING stage of the D&C process to make sure that
all DMs are in the STARTING stage before any of them
can advance to the FINISHING stage. This synchronization
is performed to ensure that all connection information of
all the components that provide a service is published to
the distributed data space before components that require
a service try to establish a connection. We realize that this
might be too strong of a requirement and therefore we intend
to further relax this requirement by making sure that only
components that require a service wait for synchronization.

In addition, our current solution also uses barrier synchro-
nization in the ACTIVATING stage to make sure all DMs
advance to the ACTIVATED stage simultaneously. This par-
ticular synchronization ensures the simultaneous activation of
a distributed application. However, it is entirely possible that
an application does not care about simultaneous activation
and therefore does not require this synchronization.

4) Resolving Challenge 4: D&C State Preservation: In
our current state of implementation, for a single deployment
plan, only the DM that is provided with this deployment plan
- i.e. the deployment leader - stores the plan and all other
DMs that part-take in deployment of that plan only know
about node-specific sub-plans provided to them by the de-
ployment leader. This means that our current implementation
is not robust enough to handle deployment leader failures.

In future, we need to design an efficient mechanism using
which all of the DMs in the system store every single
deployment plan provided to different deployment leaders
such that we have enough redundancy to handle deployment
leader failures. In addition to storing redundant deployment
plans across all the DMs, we also need to efficiently store
different component’s state information. This will also be
part of our future work.

V. EXPERIMENTAL RESULTS

This section presents results of empirical studies evaluat-
ing the self-adaptive capabilities of our D&C infrastructure.
First we present time sequence graphs to show how our
choreographed D&C infrastructure adapts applications as
well as itself after encountering a node failure during (1)
application deployment-time, and (2) application run-time.
Second, we present a discussion section for performance
comparison between LE-DAnCE and our solution.
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A. Testbed

For all of our experiments, we used a multi-computing
node cluster setup that consisted of three nodes, each with
a 1.6 GHz Atom N270 processor and 1GB of RAM. Each
node runs vanilla Ubuntu server image 13.04 which uses
Linux kernel version 3.8.0-19.

The application we used for self-adaptability experiments
presented in Sections V-B and V-C is a simple two-
component client-server experiment presented earlier in Fig-
ure 5. The Sender component (client) is initially deployed in
node-1, the Receiver component (server) is initially deployed
in node-2, and node-3 has nothing deployed on it. For both
experiments, we consider node-2 to be the node that fails.
Furthermore, we configure our infrastructure with heartbeat
period set to 2 seconds and failure monitoring period set to
5 seconds.

B. Node Failure During Deployment-time

Figure 8 presents a time sequence graph of how our
D&C infrastructure adapts itself to tolerate failures during
deployment-time. As seen from the figure, node-2 and there-
fore DM-2 fails at Event #5. Once the failure is detected by
both DM-1 in node-1 and DM-3 in node-3, DM-1 being
the leader initiates the recovery process (Event #6 - Event
#7). During this time, DM-1 determines the part of the
application that was supposed to be deployed by DM-2
in node-2, which is the Receiver component. Once DM-
1 determines this information, it completes the recovery
process by republishing information about the failure affected
part of application (Receiver component) to DM-3. Finally,
DM-3 deploys the Receiver component in node-3 and after
this point, the deployment process resumes normally.

C. Node Failure During Application Run-time

Figure 9 presents another time sequence graph that demon-
strates how our D&C infrastructure adapts applications at
run-time to tolerate run-time node failures. Unlike the sce-
nario presented before where the initial deployment of the
application has to be adapted to tolerate deployment-time
failure, here the initial deployment completes successfully at

#9 #12 #1314 #16  #18#19 #23

Node Failure During Deployment-time

Event #19 after which the application is active. However,
node-2 and therefore DM-2 fails at Event #20 and the
notification of this failure is received by DM-1 at Event
#21 after which DM-1 performs the recovery process almost
exactly the same way like it did for deployment-time failure.

The one significant difference between the deployment-
time failure mitigation and run-time failure mitigation is that
dynamic reconfiguration of application components is re-
quired to mitigate application run-time failure. To elaborate,
once DM-3 deploys the Receiver component in node-3 it
needs to publish new connection information for the Receiver
component allowing DM-1 to update Sender the component’s
connection.

VI. CONCLUSIONS AND FUTURE WORK

This paper described a self-adaptive Deployment and
Configuration (D&C) infrastructure for highly dynamic CPS.
This nature of CPS and the infeasibility of human interven-
tion calls for autonomous resilience in such systems. The
D&C infrastructure is the right artifact to architect such a
solution because of the increasing trend towards component-
based CPS. To that end we showed an approach that uses
a decentralized, choreographed approach to self-adaptive
D&C. Experimental results presented in this paper support
our claim regarding the notion that D&C infrastructures
can be used as adaptation engines to support autonomous
resilience.

The work presented in this paper incurs a few limitations:
(1) the failure detection mechanism presented in Section IV-
C.1 is not robust enough to handle byzantine failures where
a failure might be wrongly reported by some of the members
of a group. In order to handle this scenario, we will extend
the existing failure detection mechanism by using Paxos
[26] as a mechanism to achieve distributed consensus before
taking any failure mitigation actions; and (2) As mentioned
in Section IV-C.4, our current implementation for DM state
preservation is sufficient but not ideal. However, achieving
our ideal goal requires significant amount of additional work
and hence forms the contours of our future work.
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Source code for all of our work presented in this paper  [13]

can be made available upon request.
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