

Component Generation Technology for
Semantic Tool Integration1

1
 0-7803-5846-5/00/$10.00 © 2000 IEEE

Gabor Karsai and Jeff Gray
Institute for Software-Integrated Systems

Vanderbilt University
PO Box 1829 Station B

Nashville, TN 37235,USA
(615)-343-7471

{ gabor, jgray} @vuse.vanderbilt.edu

Abstract— The problem of tool integration often occurs in
the design and implementation of large computer-based
systems that rely on software-based engineering tools. Each
specialized tool contributes to a crucial step in the
engineering process. It would be beneficial to capture the
information in the context of one tool and use it in a
different tool. However, differences in file formats and
variations in the method of user interaction can make the
integration of tools a formidable challenge. This paper
presents a new approach to the tool integration problem and
describes the framework and process that has been used to
successfully integrate the data models of several tools. The
technique is centered on generators that create
“componentized” semantic translators.

TABLE OF CONTENTS

1. INTRODUCTION
2. BACKGROUND
3. THE APPROACH
4. CONCLUSIONS
5. ACKNOWLEDGEMENTS
6. REFERENCES
7. BIOGRAPHY

1. INTRODUCTION

The integration of tools used in a sophisticated engineering
process is a highly relevant problem for a variety of
domains, including aerospace engineering. Previous
approaches focused on data transformation and integration
issues. Currently, there exist a large number of related
technologies that help to solve this aspect of the problem
(e.g., CORBA, COM, XML). However, the increased
complexity and semantic richness of tools necessitates going
beyond those basic capabilities. Information captured in one
engineering tool must be expressed in the ontology of
another tool, and vice versa. Solving the integration problem

is not easy. The diversity of tools, the variations in their
method of user interactions, and differences in file formats
make the task difficult. However, the potential benefits are
also great: using information captured in one tool in the
context of another tool saves valuable, but often
uninteresting, effort.

A semantic mapping or semantic translation approach is
needed that explicitly captures the semantic relationships
among the data models of the tools to be integrated. Once
these relationships are identified, semantic translator tools
can be developed that implement the mapping. Obviously,
when the tools evolve and/or new tools are added, the
semantic translators have to be revised and the entire
translation framework has to evolve.

In this paper, we describe a technology that is based on a
framework approach. The framework consists of
infrastructural elements and tool-specific translators. The
semantic translators are componentized, and they are
generated from high-level specifications. There are three
types of specifications: (1) the data models for the input and
the output of the translator, (2) the semantic constraints to
be enforced on the data (which cannot be expressed
structurally), and (3) the mapping between the two. For
trivial cases, the mapping is easy to express in an ad-hoc
data mapping language. However, in our practice we have
found that the full power of a programming language to
express portions of the mapping is often helpful. On the
other hand, the mapping can be easily tied to the process of
the translation – the traversal of an input data structure and
the generation of an output data structure. We express the
translation process in the form of traversal sequences where
visiting an object during traversal may result in an action
that creates an output object. We have found that the
specification of semantic translators in this manner, and
their automatic generation from those specifications, greatly
enhances the productivity of software engineers who

develop integration solutions. The semantic tool integration
framework is much easier to evolve and upgrade than using
straight “hand-coding,” and there are no performance
penalties associated with the approach. The approach has
been used to permit the integration of a number of tools.
Experience indicates that the techniques are feasible for
large-scale integration as well.

2. BACKGROUND

Computer based systems are often characterized by a tight
coupling between software and hardware. This necessitates
the use of various engineering tools that model and analyze
all aspects of the system, including the computing system
and the physical environment. Each tool is specialized to
perform a particular task in a specific domain. The difficulty
lies in the fact that these tools often do not have the
capability to communicate with each other and share
modeling information.

In the past, several techniques were created in an attempt to
alleviate this problem, but unfortunately they ended up
being quick solutions that eventually turned out to be
insufficient. Some of these previous attempts are reviewed
below.

File Translators

The most obvious technique that may come to mind is file
translators. File translators are specialized programs which
do nothing more than read data generated by one tool
(typically the physical data file) and convert its contents into
another data file suitable for consumption by another tool.
These translators are very similar to commercial tools that
allow a user to convert from one file format (e.g., Word,
Excel, GIF) to another (e.g., WordPerfect, Lotus 1-2-3,
JPEG). Unfortunately, this approach has some serious
drawbacks. Arguably the biggest shortcoming of the
approach is its inherent problem with scalability. To have
full integration among n file formats, as many as n*(n-1)
translators would be required. Also, whenever a new format
is added, a translator needs to be created that will translate
the new format into all of the previously existing formats.

Middleware: CORBA, COM

The tools that are to be integrated could be viewed as
individual components. There currently exist several well-
established standards for software component integration:
CORBA [2] and COM [1] being the two major examples.
At first, it may appear that these component oriented
middleware solutions offer hope to the integration problem.
However, this solution also has its own problems.

Most distributed object-oriented component models rely on
a method of remote method invocation. This concept allows
a programmer to create a “wrapper” object around existing
components, or tools. These tools can then communicate
with each other through remote method calls. The

communication between two independent tools can be
complex. The situation becomes unfeasible as a large
number of tools are added to the integration pool. The
difficulty comes from the fact that these middleware
solutions provide relatively low-level facilities for tool
interactions. All higher-level functions are usually built
from scratch. The middleware approach can be helpful in
solving the data migration problem, but it offers little
assistance in terms of the translation that needs to be done.
This still requires deep understanding of tool behavior and
tool data structures. If every tool defines its own unique way
of accessing internal tool data, then the problem becomes
similar to that found with file translators; i.e., each new tool
that is added may require the creation of numerous new
translators.

Universal language

This solution uses a radically different strategy from the
above, although it requires the support of at least one of the
above techniques. One can think about the tool integration
problem in the context of the particular engineering process
where it is needed. Processes (and organizations) tend to
have their own vocabulary and idioms. So the idea comes:
why not design a universal “ language” (a database schema,
in practice) that will be used by all the tools across the
process. Once a language is defined, we just have to write
translators for each tool, or setup the middleware
communications to use this shared language. This is a more
efficient solution because the number of translators
increases linearly by the number of tools. Unfortunately,
where the approach breaks down is in the practical difficulty
of coming up with this universal language. Project tools are
often selected using an opportunistic approach, and it is very
difficult to make changes to the “universal” language during
the lifetime of the project. It seems that the “universal”
language is not very “universal” at all because it can’ t be
used on another project.

PCTE

The Portable Common Tool Environment (PCTE) is an ISO
standard that received much interest in the late 1980s [10]. It
was expected that PCTE would serve as a standard
repository to allow for the integration of tools. Recent
interest in this technology has subsided and no large
commercial software projects are being developed using
PCTE. Many tool vendors had problems adopting PCTE
because it’s monolithic scope required vendors to
significantly modify the source code of their tools to take
advantage of the PCTE services.

Lessons Learned

This discussion has highlighted a few important questions
concerning solutions to the tool integration problem. Each
question addresses the feasibility of a solution with respect
to time and scalability.

• How much time and effort does it cost to integrate a
new tool? If it takes a long time to perform the
integration, then it may be in an organization’s best
interest to simply translate the data manually.

• How scalable is the integration approach? The addition
of a new tool should not require a large amount of
modifications, nor should it require the creation of a
large number of new software packages.

• How much expert knowledge is needed to realize an
integration solution? One needs a very deep
understanding of the tool semantics before attempting
any kind of integration. How fast this understanding
can be turned into an integration solution will determine
the success of any kind of integration paradigm.

• What is the coupling between the individual tools and
the integration technology? An integration technology
that requires a tight coupling does not allow for
incremental/partial adoption. Tight coupling can also be
problematic for the integration of many legacy tools if
tool source code must be modified in order to take
advantage of the integration technology.

In the next section we present a new approach that offers a
solution to the integration problem. The section describes
key components of the approach and discusses its feasibility
in light of the above principles.

3. THE APPROACH

The observations made concerning the approaches presented
in the previous section clearly suggest that a tool integration
solution should address the issue of semantic
interoperability. We want our tools to work together
towards a goal, and in order to do that, some mutual
understanding, or shared semantics, is needed. The tool
integration solution should be the implementation vehicle
for this shared semantics. It is simply not enough to provide
access to the tool’s data. To solve the integration problem, a
solution must also address the issue of expressing the
relationship of a tool’s data model to this shared semantics.

M M
L R U

FR

FD E

L R U V A R

Figure 1 Tool Integration

If one associates semantics with static semantics (in the
UML-sense [3, 8]), the tool integration problem can be
visualized as shown in Figure 1. Static semantics can be

described as the integration of a data model that captures the
allowed entities and relationships in the tool’s data with
logical constraints; i.e., Boolean invariants. Given tool X,
with a particular data model, we want to map the data model
of tool X into the data model of tool Y. If we restrict the
data model used to the “entity-relationship-attribute” variety
[3], tool integration means solving the mapping problem
between two database schemas. Unfortunately, if we have
more than two tools, the mapping problem becomes
complicated, and we get to the same scaling problem as we
have seen with the file translators. It is more feasible to
establish an integrated data model first and then map the
data model of each tool into that, as shown on Figure 2. The
integrated data model (IDM) can be defined as a data model
that is rich enough to contain data from any of the tools.
The IDM is the vehicle that implements the shared
semantics across the tools.

Note that this integrated data model is neither the union nor
the intersection of the data models of the individual tools
because tool data models will overlap (although not
completely). For example, two different tools may contain
the same semantic element, yet have a different name for
this element. Therefore, the union of the two names into the
IDM would not be correct; each of the entities must be
mapped to the same concept in the IDM. Similarly, with
respect to intersection, two tools may call a semantic entity
by the same name, yet have different semantics for the
entity.

M M
L RU

FR

FDE

L RU V A R

OBS

UNITM SG

A L R

Figure 2 Tool Integration with Integrated Data Model

The Architecture

The architecture of the approach is shown in Figure 3. The
two major components of this architecture are the Integrated
Model Server (IMS) and the Tool Adaptors (TA). We chose
CORBA [2] to implement the communication medium
between these components.

The core responsibility of the IMS is to provide semantic
translation services for the constituent tools. By semantic
translation we mean a transformation of data from one data
model into another one while preserving the semantics of
the input data model and enforcing the semantics of the

output data model. Again, semantics is understood here as
static semantics, expressed in the form of constraints on the
data. The IMS also provides a short-term repository for
storing the result of the translation. The schema used in the
repository is that of the Integrated Data Model.

With regard to our specific implementation, the Microsoft
Repository is used in the Integrated Model Database to
provide meta-data management services. The underlying
database that stores the models can be either Microsoft
Access or Microsoft SQL Server.

CM I Protocol (CORBA /COM)CM I Protocol (CORBA/COM)

INTEGRATED
M ODEL

DATA BASE

Tool AdaptorTool Adaptor
for for

Tool-XTool-X

SYNTA CTICSYNTA CTIC
M appingM apping

SEM A NTICSEM A NTIC
M appingM apping Semantic Translator

for
Tool-X

Integrated M odel Server

Figure 3 Tool Integration Architecture

The Tool Adaptors are responsible for reading the tool
specific data and converting it into a model that can be sent
to the IMS. Once the data is read from the tool, the adaptor
performs a syntactic translation on the data from the native
data format of the tool to that of the middleware data-
structures. They also must be able to take a model from the
IMS and convert it into a form that can be read by the tool.
Thus, mature tool adaptors are bi-directional. Different tool
adaptors will interact with their corresponding tools in
different ways depending on the manner that a tool stores its
underlying data. Therefore, one tool adaptor may read from
a database that the tool uses to store data while another tool
adaptor may need to read from a text file. It is even possible
to have a tool adaptor access the underlying model through
COM if it is supported by the tool.

There is a common sequence for interacting with the
architecture whenever a tool wants to make its data
available. First, the tool’s associated TA must be started.
The TA obtains access to the tool’s data and begins to
construct a network of objects that will represent a model
that can be sent to the IMS. After the TA sends the model to
the IMS, the IMS receives it and begins to invoke the
semantic translator associated with that tool’s data model.
The translated model is then stored in the repository. At this
point the data is transformed into an IDM-compliant form.
The reverse process is very similar. If a particular tool
requires a model stored in the repository, the IMS first
retrieves the model from the repository and invokes the

semantic translator associated with the tool. The result of
the translation is then shipped to the TA, which converts it
to the physical data format of the tool.

Notice that the principle of separation of concerns is
observed. The concepts of syntax and semantics are handled
in separate components. The IMS is concerned about
semantic issues while the TAs are concerned only with the
syntax of the data. This distinction makes the development
of the integration solution easier. The two components are
bound together by a common interface for data interchange.
This approach is different from the one adopted by PCTE,
where there is a tighter coupling between individual tools
and the integration technology [10].

The Common Model Interface

The Common Model Interface (CMI) defines the rules of
communication and the form of the data-structures used in
the interactions between the IMS and the TAs. The CMI is
the same across all the tools: this is the common, canonical
“ form” into which all tool adaptors translate their data. The
CMI has many components related to data transfer and
interaction with the IMS, but only the most significant
aspects will be discussed here. As can be seen in Figure 3,
the CMI is implemented as a CORBA IDL specification.
The objects that receive the method invocations from the
TAs always reside in the IMS.

The primary function of the CMI is to provide a method of
data interchange between the TAs and the IMS. The data
structure exposed through the CMI resembles the traditional
entity-relationship-attribute data model. Data consists of
attributed objects, which can be models, entities, and
relations. An attribute is simply a key-value pair (the data
type of values must be from a small, but powerful set of
primitive data types, and arrays of primitive values are
allowed). An entity is a simple attributed object, without
any further structure. A relationship is an attributed object
that has two collections of objects, called roles, associated
with it: these collections contain entities or models that play
those roles in the relation. A model is an attributed object
that contains entities, relations, and other models.

It has been our experience that the CMI data model is
capable of representing data from any tool. However,
differentiation between the tools cannot be made with
respect to which tool is represented by a particular data
model. To overcome this problem, each data object also has
a type tag that indicates the meaning of the object. That is, it
is not enough to say, “ this is an entity” , but one also has to
say, “ this is an entity of type X of tool A” .

The CMI makes this distinction apparent by dealing with
the data on two-levels. Meta-data describes the data model
of a particular tool. Physically, meta-data contains models,
entities, and relations, but these are meta-models, meta-
entities and meta-relations that describe the tool’s data
model. The IMS exposes the meta-data of each of the tools

as CORBA objects. Thus, each tool, or a generic browser,
can access the meta-data for each of the tools. The instance-
data is the actual data to be transferred. The instance-data
contains models, entities and relations, where each data
object is tagged with the corresponding meta-data object’s
id (technically an object reference). This tagging makes it
possible for the IMS to determine the “real” type of a data
object. Also, this makes it possible for a TA to get the same
information.

As a TA constructs a model to be shipped to the IMS, it
should tag every instance data object with the proper meta-
data references. Likewise, when a TA receives a model from
the IMS, it can create a new model in the native tool format
by using the meta-tag relations to process each data item
correctly.

Note that we are relying on the built-in CORBA mechanism
for translating the object references. Another mechanism
used here is for marshalling/unmarshalling: CORBA
transforms complex data-structures into a network-
compliant flat format suitable for transfer. Unfortunately,
CORBA marshalling code typically cannot handle circular
structures. Therefore, the data model uses a form of indirect
object references in the case of relations: the roles do not
directly “contain” (i.e. reference) the objects involved in the
relations, instead an object id is kept which uniquely
identifies the object.

Aside from providing the common data interchange
interface, the CMI offers several other services. These
services are expressed as a set of interfaces:

• Directory services. The contents of the IMS repository

can be traversed and viewed as a directory hierarchy.
Models and directories can be viewed by calling
methods defined in this interface.

• Session management. Models can be fetched and stored
by calling operations in this interface. Also, models
may be removed from the repository using an operation
in this interface.

• IMS access. A user or TA must log into the IMS before
using it. This interface provides login/logout operations
as well as the ability to receive the IMS system clock
time.

The Evolution of the System

Evolvability is a key metric for assessing the feasibility of
an integration solution. The architecture discussed above
only gives the framework for implementing an integration
solution: it does not speak about how the system evolves.
An integration solution will never stay constant. New tools
will always need to be either added or removed from the
architecture. This continuous change necessitates the
designer to place emphasis on how the system will evolve
over time.

During the evolution of the system, the most frequent
problem is the addition of new tools. This means a new tool
adaptor has to be developed and the IMS should be
upgraded to “understand” the new tool. The upgrade means
changes in the IDM (for the repository), and the
development of new semantic translators that can manage
the data of the new tool. Both of these are non-trivial steps,
especially considering that we can already have a number of
tools integrated in the system.

The solution chosen here is closely related to work on
Model-Integrated Computing (MIC) [9]. Model-integrated
computing relies on the interpretation and use of domain-
specific models in run-time environments. The domain
models capture the relevant entities and their relationships
in a specific domain and are used in a generation process to
create executable systems. MIC has been successfully
applied in the development of various computer-based
systems, including aerospace, manufacturing industry, and
testing applications. In MIC, domain models are used to
generate components that implement a system.

There are two kinds of models that exist
1. The data model for each tool, as well as the integrated

model itself, must be specified.
2. The translation model is a specification that describes

how the semantic information in one model is to be
mapped into the model semantics of another tool.

The evolutionary capabilities of an integration solution can
be greatly enhanced if we can capture and utilize these
models as components. The IMS was not designed to be a
large stand-alone program. Rather, the design goal was to
create a framework that accepts “pluggable” components.

Figure 4 shows the internals of a semantic translator in the
IMS architecture. The reusable components contain the
generic interfaces to the network side and to the repository
side (accessible through the very same interface – just
different implementations), the implementation of CMI
services (directory, session and IMS access), and other
housekeeping functions. To instantiate the IMS framework
for a particular tool integration solution one has to build the
semantic translators.

In the IMS, the semantic translators are not created by hand.
Rather, generators are used to create the translators. The
generators receive the data model and translation
specification as input and generate C++ code that will
perform the translation. Please see Figure 5 for a description
of how translators are generated and structured within the
framework. Each semantic translator has a set of static
objects that represent the meta-data of the corresponding
tool. These objects are created from the models by invoking
a special generator. This generator requires three models:
(1) the data model of source, (2) the data model of the
destination, and (3) the translation specification of the
particular semantic translator that will perform the
conversion.

INTEGRA TEDINTEGRA TED
M ODELM ODEL

DA TA BA SEDA TABA SE

UP TranslatorUP Translator

DOWN TranslatorDOWN Translator

Constraint EnforcerConstraint Enforcer

DatabaseDatabase
InterfaceInterface

M odelM odel
InstanceInstance

DataData

Tool M eta DataTool M eta Data

C
M

I Im
pl

Figure 4 The Architecture of a Semantic Translator

Each tool has two semantic translators associated with it.
One translator, the “up” translator, performs a translation
from the tool data model into the integrated model. The
“down” translator operates in the reverse; it will translate
from the integrated model into the tool data model. The
generated C++ code of each translator for every tool is
linked (along with all other generated code and the
framework library elements) to build up the IMS.

Naturally the specification of the translation and mapping is
key to the whole solution. One might think that the mapping
is easy to formalize in the form of mapping rules. In the
most general sense, we have to describe the mapping:

map: (M,E,R,A) -> (M’ ,E’ ,R’ ,A’)

where M,E,R, and A stand for models, entities, relations,
and attributes, respectively. It is very easy to invent a simple
mapping language that captures this, and it is simple to use
and simple to generate code from it.

INTEGRATED
MODEL

DATABASE

UP TranslatorUP Translator

DOWN TranslatorDOWN Translator

Constraint EnforcerConstraint Enforcer

Database
Interface

Model Model
Instance Instance

DataData

Tool Meta DataTool Meta Data

C
M

I Im
pl

GeneratorGenerator

Tool MetaTool Meta
ModelModel

Mapping ModelMapping Model Meta Model ofMeta Model of
Integrated ModelsIntegrated Models

Figure 5 Generation of a Semantic Translator

However, after looking at the first domain data model of an
actual application the mapping language idea was quickly

abandoned. One problem with the data model was as
follows. In one of the tools the surface data model was a
simple object model, with a single level of containment.
That is, models of type M contained entities of type E. In
another tool the data model was hierarchical: models of type
M’ contained entities of type E’ and models of type M’. At
closer inspection, it turned out that the first tool’s data was
really hierarchical: each entity contained an attribute (a
string), whose value indicated the position of the entity in a
hierarchy. That is, the attribute value was used to encode a
hierarchical relationship. This lead to the conclusion that the
full power of a programming language is beneficial in most
practical situations.

However, manually writing a translator from scratch can
still be a daunting task. A practical engineering solution was
chosen to help in this situation. In previous work on the
specification of model interpreters [5], a language was
defined to specify the actions of a translator. A
corresponding generator tool now exists which supports the
rapid construction of the translators using this language.

Lieberherr was one of the first to propose a navigational
language to specify the traversal/visitor actions to be
performed on an object structure [6]. A more recent work
that is similar to our approach can be found in [7]. Their
work is focused more on traversing structures that are
expressed at a lower level (e.g., object structures in a
particular programming language). Our work is focused on
the traversal of higher level modeling structures that are
specified in our modeling language notation.

Our approach is based on a variant of the Traversal/Visitor
pattern [4]. The translator begins at a root point that
represents a model. As it performs the traversal, possibly in
multiple passes, it executes “actions” . Actions can generate
an output object, change an output object, etc. During the
traversal process one can also pass along shared data
structures that serve as a kind of context. These context
variables are used to store state information during the
traversal.

The actual form of the specification contains two parts: the
traversal specification and visitor specification. Traversal
specifications answer the following question: “ if we are at
node of type X, where do we go next?” The “next” should
be an object that is reachable from objects of type X. Visitor
specifications capture what should be done when visiting a
particular kind of object. There are two options: either
execute a “user action” (i.e. execute a piece of user-supplied
code), or proceed with the traversal (i.e. call the traverser
with the object being visited). These can be intermixed
and/or omitted completely. Note that the specification has
an outer, high-level language for describing the structure,
while the inner parts are written in a procedural language –
C++ in our case. The generator translates the above mixed
form specification into straight C++ while building the code
sequences for the traversal and iterative parts during the

process. The resulting translator code then is linked with the
rest of the IMS framework.

Below is an example of a traversal specification. The name
of the traversal is TRV and it makes use of a visitor named
VIS. In particular, the example specifies the traversal
sequence for a Primitve node. Notice that the traversal
sequence is only relevant for a specific phase. Phases are
user-defined names that signify various passes over the data
structure representing the model. The sequence of nodes to
traverse is specified in the list of names following the
reserved word “ to.” Optionally, C++ code can be embedded
at various points in the traversal sequence. The C++ code is
surrounded by the << .. >> delimiter. A similar syntax is
available for the specification of explicit actions for each
visitor node.

traversal TRV using VIS {
 from Primitive[pprriimm__ppaarrss]]
 { in phase }
 << init_action >>
 to {<< pre_in_action>>
 inputs[iinn__ppaarrss]]
 << post_in_action>>
 }

We have found that writing translators using the
traversal/visitor approach is very convenient, because the
uninteresting parts (pointer tracking, iteration, selection next
steps), are automatically taken care of by the generator. For
a specific example of the traversal/visitor approach, see [5].

Before a model is inserted into the IMS, we want to ensure
that the data is compliant with the constraints of the tool
data model. After the semantic translators have completed,
it is possible to verify that certain invariant constraints were
preserved during the translation. We use a derivative of the
Object Constraint Language (OCL) to capture the static
semantics of the data model [11]. After parsing the OCL
constraints, we generate C++ procedures that “evaluate” the
expression in the context of the result of the translation. If a
constraint is not satisfied, an error is raised and the data is
not inserted into the server. On Figure 4, the box labeled
“Constraint enforcer” represents this function. As an
example, the following expression would be used to
represent the constraint that “all model names must be
distinct from all entity names” :

-- Models and Entities must have
-- different names
constraint UniqueNames(Model top) {

top->models->
 forAll(m | entities->
 forAll(e | e.Name <> m.Name))

}

With respect to tool adaptors, a model-integrated approach
has also been used. A framework has been created that
defines many reusable components that are helpful in
writing tool adaptors. Much of the framework is focused on
issues concerning the CMI. A generator has been created
that builds “glue code” from the tool data model. This code
serves as a wrapper around the CMI data structures and
assists the adaptor writer by allowing access to CMI data
structures by referencing concepts from within the tool’s
domain.

We are looking at opportunities to utilize other technologies
to use in the data integration process. For example, we
recently completed the development of a tool that allows a
user to view the contents of an IMS model through a web
browser. Our tool is a Java applet that connects to the IMS
and allows the user to view both the meta- and instance data
for a particular model. All of the information in the model
can be visualized in a hierarchical tree control; see Figure 6.
This tool performs its function by utilizing the CMI through
CORBA. In the future, we hope to allow the user to
edit/change a model from within this browser. Another
obvious growth path for the approach is to make IMS data
available in XML form.

In summary, the process of tool integration using the IMS
relies heavily on the use of both data models and translation
specifications in order to generate semantic translators.
Obviously, as new tools are supported within the IMS, the
integrated data model will also need to evolve. This is often
a trivial process and usually allows the existing translators
to remain unchanged.

Figure 6 IMS Model Browser

Thus, adding a new tool to the integration process involves
the following procedure:

1. The data model for the tool must be described using the
notation that is recognized by the various generators.

2. Additions to the integrated model may be needed in
order to represent data contained in the new tool.

3. The semantic translator has to be modeled and
generated. The modeling involves the description of the
translation process in terms of traversal/visitor
specifications.

4. A tool adaptor must be constructed that reads/writes the
native physical data format used by the tool. This
requires an understanding of the physical model,
whether it be a specific database, comma-separated text
file, or even access using COM.

4. CONCLUSIONS

We have used the approach described in this paper to assist
us in the task of tool integration. Our most recent project
involved the integration of four different tools. The initial
effort on this project was to understand the semantics of
each tool and then formalize a representative data model.
The second task was focused on the construction of the
semantic translators. The average size of a translator was
about 225 lines of traversal/visitor specifications and C++
code. The smallest translator required only 145 lines of
specifications while the largest needed about 300 lines.
After the translators were available, work then proceeded
with the construction of tool adaptors.

There are several lessons that we have learned while
working on this project:

• The fundamental principle of separation of concerns

was found to be very powerful. Tool integration
involves both semantic and syntactic transformations. It
is conceptually cleaner to keep these issues separate.

• During the translation process, the complexity of the
relationships of the underlying data may demand the
capability to utilize the full power of a programming
language.

• The evolvability and maintainability of a system is
improved when a framework is used as the
infrastructure for generating components from models.

Our experience has shown that this approach offers a new,
yet feasible, solution toward integrating different types of
engineering tools. With an architecture-centric focus, high-
level models and code generators can be used to build
integration solutions effectively.

5. ACKNOWLEDGMENTS

The DARPA/ITO EDCS program (F30602-96-2-0227), and
The Boeing Company have supported the activities
described in this paper.

6. REFERENCES

[1] Don Box, Essential COM, Addison-Wesley, 1998.

[2] The Common Object Request Broker: Architecture and

Specification, Revision 2.0, The Object Management
Group, July 1995.

[3] Martin Fowler, UML Distilled, 2nd ed., Addison-

Wesley, 1999.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

[5] Gabor Karsai, “Structured Specification of Model
Interpreters,” in Proceedings of International
Conference on Engineering of Computer-Based
Systems, 1999, Nashville, TN.

[6] Karl Lieberherr, Adaptive Object-Oriented Software,

International Thomson Publishing, 1996.

[7] Johan Ovlinger and Mitchell Wand, “A Language for

Specifying Recursive Traversals of Object Structures,”
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 1999,
Denver, CO.

[8] James Rumbaugh, Ivar Jacobson, and Grady Booch,

The Unified Modeling Language Reference Manual,
Addison-Wesley, 1999

[9] Janos Sztipanovits and Gabor Karsai, “Model-

Integrated Computing,” IEEE Computer, pp. 110-112,
April, 1997.

[10] Lois Wakeman and Jonathan Jowett, PCTE: The

Standard for Open Repositories, Prentice Hall, 1993.

[11] Jos Warmer and Anneke Kleppe, The Object Constraint

Language: Precise Modeling with UML, Addison-
Wesley, 1999.

7. BIOGRAPHY

Gabor Karsai is Associate Professor of
Electrical and Computer Engineering at
Vanderbilt University and co-director of
the Institute for Integrated Information
Systems. He has over twelve years of
experience in software engineering. He
conducts research in the design and
implementation of advanced software

systems for real-time, intelligent control systems, and in
programming tools for building visual programming
environments, and in the theory and practice of model-
integrated computing. He received his BSc and MSc from
the Technical University of Budapest, in 1982 and 1984,
respectively, and his PhD from Vanderbilt University in
1988, all in electrical and computer engineering. He has
published over 60 papers, and he is the co-author of four
patents.

Jeff Gray received the BSc degree in
computer science from West Virginia
University in 1991 and the MSc
degree in computer science from
WVU in 1993. As a research
assistant at ISIS, he is pursuing the

PhD degree in computer science at Vanderbilt University.
His interests are formal specification languages and aspect
oriented programming. His current diversion is the creation
of an extensive list of ambiguous/inconsistent statements
(www.vuse.vanderbilt.edu/~jgray/ambig.html).

