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CHAPTER I

INTRODUCTION

A computer-based system (CBS) is essentially an integrated system composed of a com-

putational component (with embedded software), a physical environment, and a sensing and

actuation hardware mechanism which establishes an interface between the two. The phys-

ical aspects of a CBS, its hardware and environment, impose constraints or requirements

on its embedded software. The role of embedded software then is to configure and control

the computational components of a CBS to meet these physical requirements. Designing

such systems is an inherently complex task, because the constraints posed by the physical

aspects of a CBS cross-cut the entire development process - they generally cannot be sat-

isfied through a single design decision. To cope with this complexity, developers must turn

to model-based design techniques, which can holistically addresses the many interdependent

physical, functional and logical aspects of CBS design.

The advent of Model Driven Architecture (MDA) marks the beginning of the embrace of

model-based software design techniques by mainstream software developers. As the central

vision of the OMG, MDA proposes the specification of software systems through modeling

and model transformation[15][7]. It advocates the development of domain-specific software

applications through modeling to capture software requirements and design, platform, and

deployment specifications. Generally, MDA limits the role of model transformations to

one-shot mappings from abstract platform-independent models (or PIMs) to implementable

platform-specific models (or PSMs). One theme of MDA is that OMG’s widely-successful

Universal Modeling language (UML), which provides a common graphical syntax for object-

oriented design[16], will be the single, universal, platform-independent modeling language

used by model translators to generate software artifacts for specific platforms. The basis

of this conviction stems from viewing model-based design in the same light as conventional

programming, where language standardization has been an important issue. However, the
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scope of model-based design is in fact much broader. Model-based design encompasses the

entire modeling process, which inherently includes the selection of essential domain aspects,

careful separation of the modeled and not modeled worlds, and abstraction. UML alone

cannot sufficiently model all software applications, let alone inherently more complicated

computer-based systems, primarily due to its limited scope and flexibility. UML lacks native

facilities for describing specialized software domains such as distributed real-time systems,

and it provides no way to model the physical properties of embedded systems.

In an effort to provide a mechanism for expanding its limited scope, UML evolved from

a single monolithic language into a familty of closely-related languages which all extend a

common UML core. These languages are known as UML Profiles[16]. UML Profiles are

stereotyped packages that contain model elements extended with stereotypes, tagged values

and constraints. Unfortunately, profiling is not powerful enough to change the fundamen-

tal syntactic and semantic properties of UML because it merely constrains existing UML

constructs rather then modifying or add new ones. Profiling also tends to create a complex

web of interfering standards as different domain modelers profile UML in different ways to

capture the same domain’s concepts.

The realization of the insufficiencies of UML gives rise to the question, what is the right

way to model CBSs? Which modeling language should we use? Modeling languages de-

signed to capture the interesting properties of software systems, such as UML, generally lack

the necessary facilities for modeling entire CBSs. The models must also capture the phys-

ical properties of the platforms and the embedding environment to make these properties

computable and analyzable. While UML includes some diagram types useful for modeling

dynamic, reactive systems (for example, StateCharts), it is inadequate for capturing models

with a continuous-time semantics (for example, systems of ordinary differential equations).

Furthermore, the scope of modeling and the level of abstraction required for designing CBSs

are highly domain-specific. We cannot expect that the same kinds of models and modeling

languages which may be effectively used to design controllers for brake-by-wire systems in

2



cars (where safety, timing and cost are the critical properties) may be used in designing

mobile phones (where cost, power, security, and feature richness are the most important

factors). Finally, mature application areas, including engineering disciplines such as control

theory or mechanical engineering, generally have their own equally-mature domain-specific

terminology and concepts, and forcing the use of another unrelated set of concepts for mod-

eling within such a domain seems both awkward and wasteful. Consequently, it seems that

that there is no single, universal modeling language capable of satisfying the requirements of

all CBSs [12].

Designing computer-based systems requires the use of models based on domain knowledge

and terminology. This requires the invention of many modeling languages, each specific to

an application domain. The more radical approach of constructing domain-specific modeling

languages (DSMLs) demands an understanding of the fundamentals of constructing modeling

languages and creating standards and tool suites for facilitating their specification and com-

position. Model-Integrated Computing (MIC) is a domain-specific, model-driven approach

to system development which uses models and model transformations as first-class artifacts,

and where every model is a valid statement from some DSML. MIC captures the core char-

acteristics of a domain in the fixed constructs of a DSML and captures the variability of

a domain through the domain models[11][26]. Over the last ten years, MIC metamodeling

approaches have been successfully applied in a variety of application domains[9][35]. Like

MDA, MIC views the model development process as a series of transformations among mod-

els — in fact, MIC may be considered a practical manifestation of the MDA vision. However,

the primary different between MIC and MDA remains the role of DSMLs.

The vision of the domain-specific approach is that only those things important in the

domain are available to the domain modeler, and its primary supporting artifact is the meta-

model. A metamodel is a model of a DSML expressed using some metamodeling language.

Metamodeling provides a uniform way to define new modeling languages. The latest devel-

opments in UML 2[21] depend on this approach, as the UML 2 family of modeling languages
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has been defined using the Meta Object Facility (MOF). MOF has emerged as the OMG’s

standard metamodeling language, and one of the more underutilized MOF use-cases is the

specification of DSMLs which are not part of the standard MDA suite of languages[17]. In

the future, MOF may serve as a widely-adopted tool-independent metamodeling language,

allowing model data to be freely transferred between compliant tools using OMG’s XML

Metadata Interchange (XMI) technology[22].

We must also consider the need for powerful tool suites which support model-based

design by aiding in specifying, manipulating, transforming, and composing models. With

proper tool support, metamodeling allows DSMLs to be created and maintained quickly and

inexpensively. The primary MIC development tool is the Generic Modeling Environment

(GME)[2], a metaprogrammable model builder for designing and modeling in domain-specific

modeling environments. The best method for the rapid creation of domain-specific environ-

ments is to create a metamodeling environment used specifically to design them. GME

supports its own metamodeling environment and language based on UML class diagrams

with class stereotypes and OCL constraints called MetaGME.

Problem Statement

As MOF becomes the widely-adopted, industry-standard metamodeling language,

GME must evolve through metaprogramming and model transformation to support tool-

independent MOF-based metamodels while also maintaining compatibility with technologies

based on its own tool-specific metamodeling language.

This thesis describes the implementation of a MOF v1.4-based[17] alternative metamodel-

ing environment for GME through metamodeling and model-to-model transformation. The

transformation allows the new MOF metamodeling environment to leverage existing tool

support for GME modeling environment generation. The implementation of the MOF sits

as an additional layer of abstraction above the existing GME-specific metamodeling facili-

ties. This work also provides an opportunity to evaluate MOF as a metamodeling language,
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particularly in terms of its support for DSML composition. The approach taken in this

thesis demonstrates the power and flexibility granted by metaprogrammable tool architec-

tures. The primary results of the thesis have been previously described in other academic

publications[32][31].

Modeling and Composition of DSMLs

Formally, a DSML is a five-tuple of abstract syntax (A), concrete syntax (C ), syntactic

mapping (MC), semantic domain (S ), and semantic mappings (MS) [38]:

L = < A, C, MC, S, MS >

DSML syntax is defined in three parts: abstract syntax, concrete syntax, and syntactic

mapping. The abstract syntax A defines the language concepts, relationships, and any

integrity constraints which restrict the set of well-formed statements from the language.

The concrete syntax (C ) defines the specific graphical, textual, or mixed notations used to

depict model elements. The syntactic mapping MC : A → C assigns syntactic constructs

(graphical, textual or both) to the elements of the abstract syntax. DSML semantics consist

of two parts: semantic domain and semantic mapping. The semantic domain S is usually

defined by means of some mathematical formalism in terms of which the meaning of well-

formed domain models is specified. The semantic mapping MS : A → S maps concepts from

the abstract syntax to those of the semantic domain.

DSML syntax provides the modeling constructs which conceptually form an interface to

the semantic domain through the semantic mapping. Any DSML which is to be used in the

development of embedded systems requires the precise, explicit, and complete specification

(or modeling) of all five components of the language definition. The languages which are used

for defining components of DSMLs through modeling are called metamodeling languages and

the modeled, formal specifications of DSMLs are called metamodels[15].
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The specification of the abstract syntax of DSMLs requires at minimum a metamodel-

ing language which can model concepts, relationships, and integrity constraints. In GME,

UML Class Diagrams and the Object Constraint Language (OCL) form the metamodel-

ing language. This selection is consistent with UML’s and MOF’s four-layer metamodeling

architecture[17]. The elements of the abstract syntax find their representations among the

elements of the concrete syntax through the syntactic mapping. The mechanism for accom-

plishing the syntactic mapping is usually tool-dependent rather than language-dependent,

because the type of representations used depends on the capabilities of the modeling tool

which will support the DSML (thus MOF provides no facility for specifying concrete syntax).

Each semantic domain and semantic mapping pair together specify a semantics for a

DSML, and this semantics assigns a precise meaning to all of the well-formed models which

obey the integrity constraints of the modeling language. Naturally, a single model might

have multiple interesting interpretations; therefore a DSML might have a multitude of se-

mantic domains and semantic mappings associated with it. For example, both structural

and behavioral semantics are frequently associated with DSMLs. The structural semantics

of a modeling language is a set-valued semantics which describes the meaning of the models

in terms of the structure of model instances (all of the possible sets of components and their

relationships, which are consistent with the well-formedness rules defined by the abstract

syntax). Accordingly, the semantic domain for structural semantics is defined using sets.

The behavioral semantics describes the evolution of the state of the modeled artifacts with

respect to some abstraction of time. Hence, behavioral semantics is formally modeled by

mathematical structures representing some form of dynamics.

In this paper, we will focus on metamodeling of the syntactic elements (A, C and MC :

A → C) since they play the key role in tools and model transformations. Issues related to

modeling semantics are discussed elsewhere[38].

Metamodeling Language Criteria
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To effectively specify the syntax of DSMLs for graphical modeling tools such as GME, a

metamodeling language should meet the following criteria:

• Provides sufficiently expressive yet generic object-oriented concepts capable of describ-

ing any conceivable domain.

• Enables specification of the diagrammatic representation of the domain concepts.

• Allows for the definition of the well-formedness rules for domain models.

• Includes some way to specify different logical views of domain models so modelers can

focus on different relevant aspects of a system. This idea extends into the metamodeling

language itself — the language should also include a similar facility for separating the

concerns of the different interacting aspects of a DSML while it is being developed.

• Supports the extension, composition, and reuse of completed metamodels.
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CHAPTER II

MOF OVERVIEW

The Meta Object Facility (MOF) is a sister-standard of UML and is maintained by the

same standards-publishing body, the Object Management Group. MDA supplies both MOF

and UML’s profiling mechanism for defining specialized modeling languages; however, MOF

is the true MDA metamodeling language - all the other MDA standards, including UML[16],

CWM[19], and OCL[20], are specified using MOF[7]. A metamodel which is an instance of

MOF formally specifies the abstract syntax of the set of modeling constructs which constitute

a modeling language.

MOF is closely related to UML in that it utilizes the object-oriented UML Class Diagram

constructs and uses them for modeling abstract syntax. For instances, MOF uses Classes to

model domain concepts, Attributes to model concept properties, and Associations to model

relationships between domain concepts. Consequently, MOF metamodels are similar to

UML Class Diagrams. In fact, the UML Profile for Meta Object Facility defines a mapping

between the elements of the MOF model and the elements of UML Class Diagrams, and

it is possible to use this mapping to derive a graphical concrete syntax for MOF[23] (this

mapping is useful because the MOF specification itself does not provide a concrete syntax

for MOF[17]). MOF, however, strives to be simpler and smaller than UML Class Diagrams

- the minimal metamodeling language.

The OMG ratified the earliest version of MOF in 1997. Prior to MOF, many previous

attempts at model-based design had been centered on the assumption that a single object-

oriented modeling language would be sufficient for modeling all types of data. These attempts

failed because they did not take into account the fact that different types of computing

systems require different types of modeling languages - no object oriented modeling language

(or any other single type of modeling language) is universally applicable. MOF’s fundamental
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premise, however, is that there must be multiple different types of modeling languages, each

of which can provide a different view of computing systems[7].

MOF also has important relationships to two other MDA standards: XMI and CORBA.

The XML Metadata Interchange specification, which was adopted one year after the initial

adoption of MOF, provides a set of production rules which may be used to serialized any

model defined by a MOF-specified metamodel into a standardized XML format[22]. XMI

DTDs or schemas may be derived from metamodels; these are then used to validate the

XMI documents generated from models. The OMG touts XMI as a standard format for

interchanging all types of models between MOF-compliant modeling tools. There also exists

a standard mapping between MOF and CORBA which defines the automatic generation

of CORBA IDL-based interfaces from the abstract syntax specification of any modeling

language defined using MOF. In addition to spelling out the syntax of these IDL interfaces,

the MOF-CORBA mapping also enforces some of the API static semantics implied by the

structure of a metamodel[17].

The MOF Architecture

MOF’s architecture, or its overarching design and intended usage, conforms to the classic

four-metalevel metamodeling framework[17]. Each metalevel in this framework consists of

instances of elements of the next higher level.

• M0 Level: The concrete data of a system of interest at some point in time. Examples

include the contents of a database or the execution of a finite state machine.

• M1 Level: The declarative model which defines a system using domain-specific con-

cepts. One example would be a model of a specific finite state machine. Information

at this level is also known as metadata because it describes the raw system data of

level M0.
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• M2 Level: The metamodel for the domain-specific modeling language capable of ex-

pressing the structure of a system’s metadata. The UML model is a classic example;

another example would be a language for modeling finite state machines.

• M3 Level: MOF, a self-describing meta-metamodel for specifying the abstract syntax

of domain-specific modeling languages.

No metalevel beyond M3 is necessary to specify MOF, because MOF is self-describing

(or metacircular)[17]. In essence, a metamodeling language such as MOF is simply a DSML

for the domain of metamodels; as a specifier of all DSMLs, MOF is fully described using its

own modeling concepts.

Basic MOF Concepts

As defined in the v1.4 specification [17], MOF provides the following five basic object-

oriented concepts for use in specifying DSML abstract syntax:

• Classes are types whose instances have identity, state, and an interface. The state of

a Class is expressed by its Attributes and Constants, and its interface is defined by

Operations and Exceptions. Constraints can place limitations on the state of a Class.

• Associations describe binary relationships between Classes, including composition. Be-

cause MOF Associations have no object identity (that is, they are not first-class ob-

jects), they lack both state and interface. This deficiency makes the specification of

some metamodels more awkward and difficult.

• DataTypes are non-instantiable types with no object identity. By design, the different

MOF DataTypes encompass most of the CORBA IDL primitive and constructed types,

including enumerations, structures, and collections.
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• Packages are nestable containers for modularizing and partitioning metamodels into

logical subunits. Generally, a non-nested Package contains all of the elements of a meta-

model, so Packages are also the modeling concept responsible for enabling metamodel

composition, extension, and reuse.

• Constraints specify the well-formedness rules which restrict the set of valid domain

models.

Metamodel Composition and Reuse with MOF

MOF provides four features for metamodel composition, extension, and reuse: Class

inheritance, Package inheritance, Class importation, and Package importation.

Both Classes and Packages can exist in OO-style generalization/specialization hierarchies

which allow a derived Class (or Package) to inherit the structures and relationships of mul-

tiple base Classes (or Packages). Of course, Packages may not inherit from Classes and vice

versa.

Package inheritance is MOF’s facility for metamodel extension — a derived Package gains

all of the metamodel elements defined in the Package from which it inherits. This facility

is subject to constraints that disallow name collisions between inherited and locally-defined

metamodel elements as well as name collisions between metamodel elements in the different

base Packages in the case of multiple Package inheritance.

Class importation allows a Package to selectively acquire only the explicitly-desired types

from another Package for use in Class inheritance, forming Associations, or defining new

Attributes, Parameters, or Exceptions using the imported type.

Package importation is another feature for metamodel composition and reuse. It is se-

mantically very similar to Package Inheritance, except that the modeling language described

by the importing Package cannot be used to create instances of the Classes defined in the

imported Package. However, the importing Package can subtype each of the Classes of the

imported Package as if it had acquired them through Class importation, specify the types of
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typed elements such as Attributes using imported DataTypes, and define Operations which

raise imported Exceptions.

MOF Technical Advantages

This section describes the technical advantages that MOF enjoys over MetaGME, the

current GME native metamodeling language. MetaGME is discussed in more detail in

Chapter 3.

Meaningful Class Operations

MOF provides the Operation, Parameter, and Exception concepts which may be used

to model an interface to the operational semantics of a modeling language. This capability

could be used to automatically generate full MIC model interpreter APIs. In the most

current version of GME, the full interpreter API cannot be generated from a MetaGME

metamodel - only methods which query the structure or state of domain models can be

generated because MetaGME lacks the capability to model Class interfaces. Consequently,

such interfaces must be added in by hand to the C++ code which can automatically be

generated from a MetaGME metamodel[10].

Metamodel Composition and Reuse Facilities

GME provides a Library Import facility for the reuse of models (including metamodels)

through extension. Library Import when applied to a metamodel closely resembles MOF’s

Package generalization feature. GME lacks any mechanism comparable to MOF’s Package

importation. However, it should be noted that while MOF’s Package generalization disallows

namespace conflicts between the base and derived Packages, such conflicts between and

importing and an imported metamodel may be resolved in GME through the use of the

Class Equivalence operator[3]. This operator enables the union of two metamodels along

“join points” which are usually same-named metamodel elements.
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Tool Independence

As a language, MOF is not dependent on any specific modeling tool technology. It does

not mandate a concrete syntax. MOF is an industry standard which may be supported by

many different modeling tools. Its metamodeling concepts are basic object-oriented concepts

which may be intuitively grasped by any modern programmer. However, the Class stereo-

types which form MetaGME’s core modeling constructs are tightly bound to a set of core

concepts which are used internally within GME. MetaGME has been structured with the

clear assumption that the languages it specifies will be graphical in nature.

Before any tool can claim MOF compliance, it must have the capability to transform

models to and from XMI as well as generate XMI DTDs or schemas for validating models

serialized to XMI. Thus, MOF has the goal of enabling easy, reliable interchange of models

between MOF-compliant tools. The fact that MOF effectively decouples the domain model

from the tool with which it was built is another bonus of MOF’s tool-independent nature.

MOF Technical Disadvantages

This section discusses disadvantages of using MOF to specify DSMLs.

MOF and DSML Concrete Syntax

As noted previously, MOF lacks any standard mechanism for specifying DSML concrete

syntax. Thus, if a DSML requires a particular graphical notation, there is no standard way to

declare that notation and map elements of the notation to elements defined in the metamodel

which specifies the language’s abstract syntax. Any tool-based solution which attempts to

address this shortcoming by providing elegant support for concrete syntax specification in

MOF would compromise the tool-independent nature of any metamodels thus specified - the

concrete syntax information would likely be indecipherable to any other tool.

13



Figure II.1: Finite State Machine Metamodel

Figure II.2: Finite State Machine Metamodel with Labels

Lack of Association Classes

MOF’s lack of support for Associations with state makes the definition of some DSMLs

awkward. For example, consider the simple finite state machine metamodel above (Figure

II.1). Finite state machines already have a well-defined graphical concrete syntax: States are

represented as the circular nodes of a graph and Transitions between States are represented

as directed arcs between the nodes. Each arc is labeled with a letter of the input alphabet

to represent the event which prompts the traversal of the arc. But how do we model the fact

that every Transition is associated with a label in MOF?

If MOF Associations had state, we could simply give the Transition Association a string-

typed Attribute to store the letter from the input alphabet bound to each Transition instance.

However, in MOF only Classes may have Attributes, so we must add a new Class, Label, to

store this state. To model the fact that every Transition has a Label, we will need to divide

our original Transition Association into two halves as shown in Figure II.2. Now, when a user

wants to model a specific finite state machine, he or she will have to use twice the number of

Associations as well as instantiating the Label Class for every Transition instance she wants

to create between two State instances. Many DSMLs similarly require stateful Associations,
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and the inclusion of extra Classes to carry the burden of this state seems unnecessary and

awkward.

Standard Immaturity

Due to a combination of the novelty of MOF and related standards and the lack of rigorous

formality in their specifications, interoperability between “MOF-compliant” tools is not as

dependable as hoped in the MDA vision. The MOF specification and the XMI specification

both take the form of a series of diagrams supported by natural language descriptions.

Due to the imprecise nature of natural language, each includes a number of ambiguities

and contradictions which prevent the specifications from being implemented uniformly by

modeling tool vendors. One result of this is that although the most current version of XMI

is XMI 2.0, the de facto industry standard is the Unisys implementation of XMI 1.2.
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CHAPTER III

GME OVERVIEW

Modeling Tool Architectures and Metaprogrammability

Modeling environments are typically supported by tool architectures which include sev-

eral key tool components: a model builder, a model database, a constraint manager, and

a number of model interpreter components[5]. Model builders expose some well-defined

interface which allows modelers to perform standard CRUD (create, request, update, de-

stroy) operations on model objects which are stored in the model database. The model

builder must incorporate the concepts, relationships, composition principles, and represen-

tation formalisms of the supported modeling language, and the interface provided by the

model builder may be textural, graphical, or mixed. The constraint manager is responsible

for enforcing the well-formedness rules which restrict the set of valid models of a modeling

language. Model interpreters ’execute’ models in order to solve some problem of interest.

When used, they translate system models into executable applications or input to analysis

tools. System models, which serve as input to model interpreters, form the “problem space”,

a representation of that part of the world which is germane to some specific problem which

must be understood and solved. The output of the model interpreters forms the “solution

space”, generally some executable simulation or analyzable mathematical formalism which

provides useful information about the modeled system. In this sense, model interpreters

may be said to implement the operational semantics of the supported modeling language.

GME[2] is one example of a modeling tool which provides a model builder, model database,

constraint manager, and model interpreter support; its architecture is depicted in Figure

III.1.

MIC advocates the use of domain-specific modeling environments (DSMEs) because these

environments are well suited for the design and implementation of complex CBSs. DSMEs

such as MatLab[33] and LabView[30] have enjoyed great success, partially due to the large
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Figure III.1: Modeling Tool Architecture: GME

markets for the domains they capture. However, the primary drawback to the domain-specific

approach is that building a new language and modeling tool to support a narrowly-used niche

domain (for example, a co-design environment specialized for a single type of missile) might

be unjustifiably expensive. At the other extreme, a general modeling tool with “univer-

sal” modeling concepts and components would lack the primary advantage offered by the

MIC approach: dedicated, customized support for a wide variety of application domains.

A third alternative is to use a highly-configurable modeling tool with model building, con-

straint management, and model interpretation components which may be easily customized

to support a unique environment for any given application domain.

Metaprogrammable tools such as the Generic Modeling Environment (GME) rely on

metaprogramming as the mechanism for accomplishing this level of configuration[4]. For

example, GME incorporates a generic set of graphical model-building idioms, a constraint

manager, and a database backend. Users may draw upon the graphical idioms to imple-

ment the structure and representation of domain objects and relationships. They may also
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configure the constraint manager to enforce the particular well-formedness rules of the do-

main. Finally, they may configure the database backend for storing domain model objects.

Metaprogramming is the process through which the user configures the (A) metaprogram-

mable model builder by mapping a DSML into GME’s graphical idioms, (B) the constraint

manager by assigning constraints to the valid domain modeling operations, and (C) the data-

base backend through the specification of an appropriate database schema. The result of

this metaprogramming is a valid DSME supported in GME[27]. Other metaprogrammable

tools include Dome[24] and MetaEdit+[6].

Origins of Metaprogramming: The Multigraph Architecture

The evolution of GME begins in 1995 with the Multigraph Architecture (MGA), one of

the earliest metaprogrammable modeling tools[27][28]. MGA concentrated on supporting

model-based design environments for large-scale embedded computing applications domi-

nated by mature engineering disciplines. Essentially, the operation of MGA divided into

three layers: the meta-level layer for the specification of DSMEs, the domain-specific mod-

eling layer, and the model execution layer. Early versions supported the use of an early

informal declarative metaprogramming language at the meta-layer which introduced several

of the fundamental modeling patterns which dominate GME’s current native metamodeling

language. These patterns included aspects (model views), associations, membership-based

groupings, hierarchically-composable entities (modules) with connection interfaces, integrity

constraints, module interconnections, and specialization. MGA conceptualized DSMEs as

unique combinations of these model composition principles. This metaprogramming lan-

guage effectively supported the informal specification of the abstract syntax, concrete syntax,

syntactic mapping, and static semantics (domain constraints) of DSMLs. The MGA meta-

level also included a set of meta-level translators to automatically generate configuration files

for its model builder and model database directly from DSME specifications. Note, how-

ever, that the MGA’s earliest metaprogramming language was not actually a metamodeling
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language — it was simply an informal declarative configuration language used to generate

configuration files. Because the language was not formal, there was no way to validate the

consistency of the specified modeling concepts to ensure that the specified environment suf-

ficiently constrained domain modelers[13]. Thus, MGA’s structure incorporated only the

bottom three of the four meta-levels advocated in OMG’s modeling formalism.

Metamodeling Extensions to MGA

In 1998, support for the design of DSMEs through metamodeling was added to MGA in

order to address the shortcomings of the earlier version’s metaprogramming language[14].

The adopted formal metamodeling language consisted of UML Class Diagrams with OCL

constraints. Thus, the abstract syntax of MGA DSMEs could be formalized as UML-based

metamodels through graphical entity-relationship diagrams, and domain constraints could

be formalized in OCL as textual invariant Boolean expressions. This MGA metamodeling

approach required the specification of DSML concrete syntax as a separate step before a

metamodel could be used to synthesize an MGA modeling environment. The specification

was accomplished by mapping the entities and relationships specified in the class diagram

to various MGA-specific presentation objects and patterns. These objects and patterns

included general model composition abstractions, such as hierarchy and aspects, which were

carried over from the previous version of MGA.

This transition represented not only an advance in the formality of the MIC model-based

design process, but also a leap forward in the usability of MGA. By using industry-standard

modeling languages for metaprogramming, potential MIC users familiar with those modeling

languages could more quickly and accurately communicate their DSME requirements to

MGA metamodelers. The new approach separated the concerns of abstract syntax, concrete

syntax, and static semantics which had been tangled in the previous metaprogramming

language. Metamodeling also opened the door both to metamodel reuse and to inter-tool

transfer of modeling language specifications. Unfortunately, the mapping of the class diagram
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into an MGA-specific concrete syntax specification proved to be a bottleneck — the UML

class diagrams did not contribute much to the actual definition of modeling environments,

and concepts such as inheritance had to be enforced by hand. Consequently, the DSME

specification process was still error-prone and slow.

Modern Metamodeling with GME

1999 marked a substantial revision of both the MGA core modeling constructs and the

MGA metaprogramming facilities in an effort to make MIC solutions easier to implement[25].

The core MGA constructs underwent two types of changes: First, several constructs changed

in name (for instance, the membership-based grouping construct’s name was changed from

“Conditional Controller” to “Set”). Second, several constructs which had lacked object

identity in the previous version of MGA became first-class objects, including References,

Connections, and Sets. Thus, these constructs became configurable in name and represen-

tation.

The metaprogramming facilities had to evolve to support these changes, but also to in-

crease usability and expressiveness. A boot-strapping process was used to develop a CBS

to serve as the metamodeling environment for the new MGA tool, the Generic Modeling

Environment (GME). This new metamodeling environment, called MetaGME, still con-

sists of UML Class Diagrams and OCL constraints, but unifies the functionality of the two

diagrams needed to specify abstract and concrete syntax in the previous MGA implemen-

tation. MetaGME, like MOF, is meta-circular — it has been used to model itself and is

self-defined using its own concepts. The model of GME’s metamodeling environment is

GME’s meta-metamodel. This approach allows some further improvement by evolving the

meta-metamodel and then boot-strapping the improvements into the metamodeling environ-

ment. However, this is still not a trivial task even with the presence of the reconfigurable
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meta-metamodel because GME must maintain the ability to support all existing metamod-

els. This factor strongly influenced the approach taken in building a MOF metamodeling

environment for GME.

GME is currently the flagship tool of MIC. In addition to serving as a metaprogrammable

modeling tool in the spirit of the original MGA, GME provides library import and export

facilities and custom model visualizations. There are also facilities for plugging in analysis,

verification, and translation tools which interpret domain-specific models. GME’s metamod-

eling language, MetaGME, utilizes UML stereotypes to imply part of the syntax expressed

by the metamodel. It also maintains the important modeling patterns which have been cen-

tral to MGA since its earliest versions, such as module interconnection. The meanings of

the stereotypes used in MetaGME are[4]:

• Models are hierarchically-compound modular objects.

• Atoms are elementary, non-decomposable objects.

• FCOs are generic first-class objects which must be abstract but can serve as the base

type of an element of any other stereotype in a specialization relationship.

• References refer to other model objects.

• Connections are analogous to UML Association Classes.

• Aspects provide logical visibility partitioning to present different views of a model.

GME-based metamodeling is demonstrated in Figure III.2. The metamodel

MetaGMEMMDSML of a DSML consists of the abstract syntax MetaGMEADSML, concrete

syntax MetaGMECDSML, and syntactic mapping MetaGMEMCDSML specified using the UML

constructs of MetaGME. The MetaGMEMMDSML metamodel is translated by the T1 meta-

level translator (called the meta-interpreter) into a configuration file for GME (represented in

Figure III.2 by the box labeled “GME/Meta”). Using this configuration file, GME configures
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Figure III.2: Metamodeling with GME

its graphical model builder, model database, and constraint manager to function as the

domain-specific modeling environment for the metamodeled domain. (A simplified diagram

of the metamodeling process can be seen in Figure 1.B)

There exists a large body of existing GME-based DSML-s[34][8]. There also exist a num-

ber of related modeling tools, including the model-to-model transformation tool GReAT[1].

Because of this large volume of existing DSMLs and tools which depend on the existing

GME metamodeling language, a whole-sale replacement of MetaGME is not desirable. This

thesis describes work to update the MIC metamodeling facilities to incorporate the MOF

standard alongside the UML/OCL-based MetaGME.
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CHAPTER IV

GME-MOF

This chapter describes the implementation of a functional MOF-based metamodeling en-

vironment for metaprogramming GME. GME-MOF leverages the existing GME metamod-

eling language and meta-level translators for the realization of new GME DSMEs[32][31].

Solution Overview

As described previously, any functional GME metaprogramming system must incorpo-

rate two key components. The first component is a metamodeling environment (ideally, a

graphical environment) which supports the specification of abstract syntax, concrete syntax,

and syntactic mappings. The second component is a translation tool capable of generating

from the metamodel of a target domain the configuration file which customizes GME to serve

as the DSME for that domain. MetaGME itself defines a metamodeling environment with

sufficient expressive power to fully model MOF. So, while the MOF specification uses MOF

to model itself, GME-MOF includes a new GME metamodeling environment which expresses

the MOF model using MetaGME’s constructs. Furthermore, because MetaGME by design

already reflects the full range of configurations which can be realized by GME, the easiest

way to acquire the necessary translation tool is by defining a model-to-model transformation

algorithm from MOF-specified metamodels into MetaGME-specified metamodels.

Transforming a MOF-specified metamodel into a MetaGME metamodel enables the con-

scription of MetaGME’s existing meta-interpreter to generate the GME configuration file.

The transformation algorithm is quite straightforward because both MOF and MetaGME

are sister-languages of UML Class Diagrams. GReAT was the natural choice for implement-

ing this metamodel translation algorithm - it enabled the easy and rapid creation of the

executable metamodel translation tool, named MOF2MetaGME. MOF2MetaGME itself is

easy to analyze, maintain, and evolve as the two languages it bridges evolve.
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The shaded components in Figure IV.1 represent the new facilities required to implement

MOF for GME: MetaGMEMMMOF is the MetaGME-specified MOF model and T2 is the

MOF2MetaGME transformation algorithm from MOF-specified metamodels to MetaGME-

specified metamodels. T1 is MetaGME’s meta-interpreter, the meta-level translator which

generates the GME configuration files from the translated metamodels. This configuration

file customizes GME’s graphical model builder, constraint manager, and model database to

support the modeled DSME.

Figure IV.1: Building the MOF-Based Metamodeling Environment

Appendix A describes the implementation of the GME-MOF metamodeling environment,

and Appendix B describes the implementation of MOF2MetaGME.

Figures IV.2, IV.3, and IV.4 compose a small example which illustrates the full function

of GME-MOF. Figure IV.2 is a small part of a MOF-based implementation of UML class

diagrams used as the input to MOF2MetaGME, and Figure IV.3 is the corresponding output

produced by MOF2MetaGME. Note the high degree of symmetry between the two diagrams.

Figure IV.4 demonstrates the graphical DSME interpreted from the MetaGME metamodel

shown in Figure IV.3.
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Figure IV.2: UML Class Diagrams in MOF

Figure IV.3: UML Class Diagrams in MetaGME

Figure IV.4: UML Class Diagrams DSME
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Solution Advantages

GME-MOF successfully enables MOF-style metamodel specification in GME by reusing

the entire existing GME metaprogramming toolset. Consequently, it does not require any

major overhaul of the GME core constructs which would break compatibility with existing

GME DSMEs. GME-MOF implements MOF as an additional layer of abstraction over

MetaGME.

Furthermore, GME-MOF takes advantage of MOF’s light-weight extension mechanism,

the Tag, to include some GME-specific syntax information in MOF metamodels. The

GME-MOF metamodeling language includes augmented MOF Classes, Associations, Pack-

ages, Constraints, and Attributes with additional fields which may be conceptualized as

MOF Tags. These fields specify GME tool-specific information and facilitate mapping into

MetaGME. In this way, GME-MOF allows the specification of concrete syntax without de-

viating from the MOF standard.

GME also supports an extension mechanism similar to MOF Tags through the GME

Model Registry. Like MOF Tags, GME registry entries are simple name-value pairs. MOF2-

MetaGME makes use of the GME registry to store encoded information about the MOF

DataTypes, Operations, Parameters, and Exceptions expressed in a MOF metamodel when

it performs the transformation into MetaGME. Then, the BONExtender, a meta-level trans-

lator which generates domain-specific model interpreter C++ APIs from MetaGME meta-

models, can recover this information and include it in the generated API. Usually these

operations, exceptions, and data types would need to be hand-woven into the automatically-

generated C++ class definitions rendered by the BONExtender, which is a tedious and brittle

process. In this way, users tangibly benefit from modeling Class operations and data types

in their MOF metamodels, even though operation modeling is not supported by MetaGME.

This feature allows more model interpreter code to be autogenerated from models rather

than being hand-written.
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Solution Limitations

The limitations of GME-MOF largely stem from the dissonance between MOF as a tool-

independent metamodeling language and MetaGME as a metamodeling language tightly

coupled to a graphical modeling tool. The translation from MOF into MetaGME is not

isomorphic — MOF provides some constructs and capabilities that MetaGME lacks (and

vice-versa). MOF allows a wider range of potential attribute types, the concepts of derived

attributes and associations, singleton classes, and classifier-scoped attributes. None of these

concepts are supported for domain modeling in GME. Likewise, MetaGME provides facilities

for multi-view modeling, concrete syntax specification, and some syntax identifiers which

carry special meaning as GME graphical modeling idioms. As a result of these differences,

users can construct valid MOF metamodels which cannot be fully rendered as GME DSMEs.

In these cases, the MOF2MetaGME translator simply discregards the use of any feature

which cannot be mapped into features supported by MetaGME.

Additionally, neither MOF nor MetaGME are stable languages. The OMG will soon

release an updated version of MOF, MOF 2.0[18]. MetaGME itself constantly evolves in

small ways in response to user requests and to maintain synchrony with the internal GME

modeling constructs. Consequently, both the GME-MOF metamodeling environment and

the MOF2MetaGME transformation require consistent updates to support the most current

versions of both languages. Fortunately, both GME metamodels and GReAT transformations

were designed with system evolution in mind.

Case Study and Evaluation

This section describes the specification of a simple DSME for hierarchical finite state ma-

chines (HFSM) using GME-MOF. The metamodel for this DSME is evaluated in comparison

to a HFSM metamodel built natively using MetaGME.
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HFSM in GME-MOF

The GME-MOF metamodel for HFSM is built from three packages (Figure IV.5):

• Primitives, which merely stores primtive DataType definitions such as String and In-

teger

• Event, which contains a simple metamodel for fully-ordered sequences of events

• HFSM, which defines hierarchical finite state machines by reusing the definitions from

the Event package.

Figure IV.5: Packages used to define HFSM

The internals of the Event package appear in Figure IV.6. This metamodel specifies

that event instance may be created with instances of InputSequence and may form Sequence

relationships with one another. The Sequence relationship may be used to provide a total

ordering of the Events in an EventSequence, as the multiplicity settings of Sequence specify

that each Event may be directly preceded by at most one other Event. The metamodel uses

the Delay attribute of Event to capture any time delay which should occur between Events.

Delay is typed using the Integer PrimitiveType imported from the Primitives package. Tags

were used to tailor this metamodel for transformation into MetaGME to achieve the following

effects:

• Event maps into a MetaGME Atom.
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• InputSequence maps into a MetaGME Model.

• The Sequence association maps into a MetaGME Connection contained by the Input-

Sequence Model.

• The InputSequence Model may appear in the Root Folder of a project.

• Event uses the icon ‘event.bmp’ for its concrete syntax.

Figure IV.6: The Event Package

The metamodel encapsulated by the HFSM package appears in Figure IV.7. It describes

hierarchical States connected by Transitions, including special final and initial states. HFSM

inherits from Event to allow users to model the events which drive a given state machine.

There are several interesting things to note regarding this metamodel. First, because Tran-

sition requires some state, it must be declared as a class and not as a simple association.

Second, the Event attribute of Transition is the imported String type instead of the Event

type inherited from the Event package. This is a concession to GME, which only supports

attributes of type integer, double, float, string, and boolean. In order to build a correspon-

dence between the event used by a Transition instance and the Event instances declared in

a model, an OCL constraint is defined stating that the value of a Transition instance’s event

attribute must be the same as the name of some Event instantiated in the model. Finally,

State defines an operation, is reachable, which takes in two States, start and dest, and returns

a Boolean. MOF does not allow modeling of the operational semantics of this operation,
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but a model interpreter might define it to perform reachability analysis on a hierarchically-

embedded state machine. Tags were used to tailor this metamodel for transformation into

MetaGME to achieve the following effects:

• State maps into a MetaGME Model.

• The State Model may appear in the Root Folder of a project.

• TransitionOut and TransitionIn map into MetaGME Connections contained by the

State Model.

• Transitions map into MetaGME Atoms.

• State, FinalState, InitialState, and Transition use icons ‘state.bmp’, ‘final.bmp’, ‘ini-

tial.bmp’, and ‘event.bmp’ respectively for concrete syntax.

Figure IV.7: The HFSM Package

Evaluating GME-MOF versus MetaGME

A similar MetaGME metamodel for simple HFSM consists of two the ParadigmSheets

displayed in Figures IV.8 and IV.9.
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Figure IV.8: The Event ParadigmSheet

Figure IV.9: The HFSM ParadigmSheet

Comparing this metamodel to the metamodel used to build HFSM in GME-MOF can

provide a practical evaluation of the relative strengths and weaknesses of GME-MOF. The

HFSM case-study illuminates three primary differences in the metamodeling capabilities of

the two environments:

1. The GME-MOF version of HFSM includes the explicit modeling of a class operation,

is reachable, using first-class language constructs. This eases the specification of a

domain-specific API which could be used by a model-interpreter to provide analysis

capabilities for HFSM models. MetaGME lacks language constructs which deal with

operations.

2. Because MetaGME is the native metamodeling language of GME, there is no need

to keep any lower-level metamodeling language in mind while metamodeling. For
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example, in MetaGME, it is natural to model the Event attribute of Transition as a

string-typed attribute, because that is all that MetaGME allows. In order to hold

consistency with the MOF standard, GME-MOF allows another option: the Event

attribute of Transition could have type Event. However, the metamodeler must keep

the restrictions of MetaGME in mind while metamodeling in GME-MOF.

3. As discussed previously in this thesis, the lack of association classes in MOF makes

the specification of stateful relationships somewhat awkward. This awkwardness man-

ifests itself in the definition of Transition in GME-MOF as a class joined to State by

two associations versus the definition of Transition in MetaGME as a single stateful

connection.

Although GME-MOF is not entirely an improvement on MetaGME, the HFSM example

illustrates that it provides a useful technical advantage (class operation modeling) while

allowing useful DSMEs to be specified for GME using a MOF-compliant language.
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CHAPTER V

DISCUSSION AND FUTURE WORK

This thesis describes work to implement an alternative MOF-based metamodeling envi-

ronment for a metaprogrammable modeling tool through metamodeling and model-to-model

transformation. The solution depends on a model transformation from MOF-specified meta-

models to analogous metamodels in a different, tool-specific metamodeling language. The

approach is useful because it enables the reuse of the tool’s existing metaprogramming fa-

cilities and avoids breaking its compatibility with existing DSME and models. However,

there are drawbacks to this solution as well. One is that the transformation between the

two metamodeling languages must be constantly updated, as both languages will continue to

evolve in response to user demands. Another is that the two metamodeling languages have

enough differences that neither can be elegantly mapped into the other. These concerns give

rise to two important questions:

• Do complicated metamodeling languages like MOF or MetaGME make good “core”

metaprogramming languages for metaprogrammable modeling tools?

• How can we design adaptable metaprogrammable tool architectures to minimize the

effect of changing metamodeling languages?

Instead of basing metaprogrammable tools on a high-level, user-friendly metamodeling

language, we might use a minimal language expressing a core abstract metaprogramming

semantics meaningful to any metaprogrammable modeling tool. Alternatively, we might use

a pair languages — one for describing abstract syntax and another for describing concrete

syntax. Because the general requirements of metaprogrammable modeling tools (entity-

relationship modeling, support of CRUD operations on models, constraint management,

etc...) do not change, this minimal metaprogramming language could be stable and stan-

dardized. Then, we could express the semantics of more complicated, user-friendly languages
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such as MetaGME and MOF in the primitive constructs defined by the minimal metapro-

gramming language. This approach could yield two primary benefits: 1) The minimal

metaprogramming language would define the limits of what features a higher-level meta-

modeling language might provide. If some feature cannot be rendered down and expressed

by the abstract metaprogramming semantics, then it should not be in a metamodeling lan-

guage. 2) It would easier to define a model-interchange standard for the simple minimal

metaprogramming language than for a complicated language with many constructs such as

MOF. One such commercial metamodeling facility which attempts to use this approach is

XMF[36][37]. This language provides a simplified MOF-like language for modeling abstract

syntax. This core language is then extended with a seperate concrete syntax modeling

language, OCL for specifying well-formedness rules, an action language called XOCL for

modeling operational semantics, and a mapping language called XMap for specifying model-

to-model transformations. All of XMF is ultimately defined using an even simpler core set

of executable metamodeling constructs called XCore.

We might also consider generalizing the solution presented in this thesis — model-to-

model transformations can mitigate some of the complexity of designing and interfacing

the various components of an adaptable metaprogrammable tool architecture. Solutions

implemented through graphical model-to-model transformations are easier to design, build,

understand, and evolve than functionally-similar traditional programming solutions. Model-

to-model transformation languages such as GReAT can leverage the power of domain-specific

modeling to decouple the metamodeling language from the other components of a metapro-

grammable modeling tool. For example, consider the model interchanger, a common mod-

eling tool component which converts models both to and from some model interchange lan-

guage. Model interchange languages allow the migration of models between tools. MOF, for

instance, provides a mapping to XMI, the OMG standard model interchange language. This

34



component can be most easily implemented as a model-to-model translation between meta-

models or domain models and models in the interchange language. Such a transformation

could be easily maintained as the relevant standards change and evolve.

35



APPENDIX A

GME-MOF ENVIRONMENT IMPLEMENTATION

This appendix provides an abbreviated specification of the GME-MOF environment (mi-

nus the details of the UML Class Diagrams-like concrete syntax and the actual OCL con-

straint equations) in the form of a series of MetaGME class diagrams, natural language

constraint descriptions, EnumAttribute enumeration labels, and Aspect visualization infor-

mation. Detailed information about MetaGME may be found in the GME User’s Manual[10].

Figure A.1: Abstract Base Classes

Abstract Base Classes (Figure A.1)

Constraints:

Name: MustHaveType

Constrains: TypedElement

Description: A TypedElement must have one and only one type.

Visualization:

TypedElement and BehavioralFeature are visible in the Features Aspect.
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Figure A.2: Association

Association (Figure A.2)

Constraints:

Name: BinaryAssociations

Constrains: Association

Description: Associations must be binary.

Name: NoNameCollisions

Constrains: Association

Description: The contents of a Namespace may not collide.

Visualization:

Associations are visible in the ClassDiagram Aspect.

Class, Attribute, and Operation (Figure A.3)

Constraints:

Name: NotSingletonAndAbstract

Constrains: Class
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Figure A.3: Class, Attribute, and Operation

Description: A class may not be both singleton and abstract.

Name: AllOutParam

Constrains: ExceptionType

Description: An Exception’s Parameters must all have the direction ’out’.

Name: OneReturnParam

Constrains: Operation

Description: An Operation may have at most one Parameter whose direction is ’return’.

Name: NotNull

Constrains: ClassProxy, ExceptionProxy

Description: A proxy may not be null.
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Name: LegalProxy

Constrains: ClassProxy, ExceptionProxy

Description: This element must be visible in the current context before it can be proxied.

Enumeration Labels:

Parameter::direction: in, out, inout, return

Visualization:

ClassType is visible in the ClassDiagram Aspect. ClassType and CanRaise are visible in

the Features Aspect.

Figure A.4: Constant

Constant (Figure A.4)

Constraints:

Name: TypeIsPrimitive

Constrains: Constant

Description: Constants must have primitive types.

Constraint (Figure A.5)

Constraints:

Name: ValidElement

Constrains: Constraint
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Figure A.5: Constraint

Description: Constraints, Imports, Tags, and Constrants may not be constrained.

Enumeration Labels:

Constraint::EvaluationPolicy: immediate, deferred

Visualization:

ModelElement, Constraint, and Constrains are visible in the Constraints Aspect.

Figure A.6: Containment
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Containment (Figure A.6)

Constraints:

Name: NoNameCollisions

Constrains: Namespace

Description: The contents of a Namespace may not collide.

Figure A.7: DataType

DataType (Figure A.7)

Constraints:

Name: NotAbstract

Constrains: DataType

Description: A DataType cannot be abstract.

Name: ContainsStructureField

Constrains: StructureType

Description: A StructureType must contain at least one StructureField.

Name: NotNull
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Constrains: DataTypeProxy

Description: A proxy may not be null.

Name: LegalProxy

Constrains: DataTypeProxy

Description: This element must be visible in the current context before it can be proxied.

Name: NotProxied

Constrains: DataTypeProxy

Description: A DataType Proxy must reference a type, not another proxy.

Visualization:

DataType and IsOfType are visible in the Features Aspect.

Figure A.8: Generalization

Generalization (Figure A.8)

Constraints:

Name: HasDerived

Constrains: Inheritance

Description: Inheritance operator is superfluous or invalid. It must have a derived element.
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Name: AllowableType

Constrains: Inheritance

Description: Only Classes and Packages may participate in generalization relationships.

Name: SingleBase

Constrains: Inheritance

Description: Inheritance operator is superfluous or invalid. It must have one and only one

base element.

Name: NoRecursion

Constrains: GeneralizableElement

Description: Recursive inheritance chains are not allowed.

Name: RootCannotGeneralize

Constrains: GeneralizableElement

Description: Root elements cannot be generalized.

Name: LeafCannotSpecialize

Constrains: GeneralizableElement

Description: Leaf elements cannot be specialized.

Name: NoAncestorNameConflicts

Constrains: GeneralizableElement

Description: The names of the contents of the supertypes of a GeneralizableElement may

not collide with one another.
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Name: NoInheritedNameConflicts

Constrains: GeneralizableElement

Description: The names of the contents of a GeneralizableElement should not collide with

the names of the contents of any direct or indirect supertype.

Name: NoIllegalDependencies

Constrains: GeneralizableElement

Description: The base type of a GeneralizableElement must lie within the scope of the

derived type.

Visualization:

Supertype, Subtype, and Inheritance are visible in the ClassDiagram Aspect.

Figure A.9: GME-MOF Aspects

GME-MOF Aspects (Figure A.9)

No constraints, labels, or visualization information.
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Figure A.10: Package

Package (Figure A.10)

Constraints:

Name: NotAbstract

Constrains: PContainer

Description: A package may not be declared abstract.

Name: NotEmpty

Constrains: PContainer

Description: Package is invalid or superfluous. It contains nothing.

Name: CannotImportSelf

Constrains: Import

Description: Packages cannot import or cluster themselves.

Name: SingleSheet

Constrains: PackageSheet
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Description: There can only be one PackageSheet in a project.

Name: NotNull

Constrains: Import

Description: An Import may not be null.

Name: CannotImportContents

Constrains: Import

Description: Packages cannot import or cluster Packages or Classes that they contain.

Visualization:

Import, PContainer, and PackageSheet are visible in the ClassDiagram Aspect.

Figure A.11: Tag

Tag (Figure A.11)

Visualization:

Tag and AttachesTo are visible in both the ClassDiagram and Features Aspect.

Multi-Aspect Modeling (Figure A.12)

Constraints:

Name: ModelsHaveAspects
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Figure A.12: Multi-Aspect Modeling

Constrains: ClassType

Description: Only Classes of GME Stereotype “Model” may have Aspects.

Name: MustHaveOpenAspect

Constrains: ClassType

Description: Classes of GME Stereotype “Model” must have at least one open Aspect.

Name: HasMember

Constrains: Aspect

Description: An Aspect must have at least one Class member.

Name: NotNull

Constrains: AspectProxy

Description: A proxy may not be null.
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Name: OneRight

Constrains: SameAspect

Description: The SameAspect operator must have one and only one right operand.

Name: OneLeft

Constrains: SameAspect

Description: The SameAspect operator must have one and only one left operand.

Name: ValidOperands

Constrains: SameAspect

Description: One of the operands of the SameAspect operator must be an AspectProxy

Visualization:

SameAspectBase, Association, ClassType, AspectBase, and has HasAspect are visible in

the Visualization Aspect.

Figure A.13: GME Mappings
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GME Mappings (Figure A.13)

Note regarding GME Mappings: No constraints, labels, or visualization information apply to

these constructs. Inheritance is used to augment some MOF elements with the ability to spec-

ify information relevant to GME, including concrete syntax specifications. The definitions of

each of these additional attributes are given in the GME Manual and User Guide[10]. Note

that these attributes may be conceptualized as MOF Tags applied on an element-by-element,

metamodel-by-metamodel basis.
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APPENDIX B

THE MOF2METAGME TRANSFORMATION

Essentially, MOF2MetaGME expresses a mapping between most MOF language con-

structs and their corresponding MetaGME constructs. Table B.1 provides an overview of

this mapping. Note that MOF Classes and non-aggregate Associations find their coun-

terparts in a number of different MetaGME constructs. For instance, MetaGME Atoms,

Models, etc are all stereotyped UML Class instances. In these cases, user-defined MOF

Tags are used to guide the transformation such that each MOF object maps into the proper

MetaGME construct. MOF Exceptions, StructureTypes, Operations, Aliases, and Enumer-

ationTypes which do not define the type of an Attribute have no counterparts in MetaGME.

So that this information is not lost during the transformation, MOF2MetaGME encodes it as

text-valued entries in the GME Registry. The BONExtender, a GME meta-level translator

which generates domain-specific model interpreter C++ APIs from metamodels, can recover

the encoded information and incorporate it into generated code.

MOF Construct MetaGME Construct
Top-level Package SheetFolder+ParadigmSheet
Nested Package ParadigmSheet
Class FCO, Atom, Model, Set, or Reference
Non-Aggregate Association Connection, SetMembership, or ReferTo
Aggregate Association Containment
Boolean Attribute BooleanAttribute
Integer Attribute Integer FieldAttribute
Double Attribute Double FieldAttribute
String Attribute String FieldAttribute
MOF Constraint MetaGME Constraint
Exception, StructureType, Operation,
EnumerationType, or Alias

GME Registry Node

Table B.1: MOF Construct to MetaGME Construct Mapping
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Basics of GReAT

The Graph Rewriting And Transformation language (GReAT) is a model-to-model trans-

formation language developed at Vanderbilt University[29]. GReAT supports the develop-

ment of graphical language semantic translators using graph transformations. These transla-

tors can convert models of one domain into models of another domain. GReAT transforma-

tions are actually graphically-expressed transformation algorithms consisting of partially-

ordered sets of primitive transformation rules. To express these algorithms, GReAT has

three sub-languages: one for model instance pattern specification, one for graph transfor-

mation, and one for flow control. The GReAT execution engine takes as input a source

domain metamodel, a destination domain metamodel, a set of mapping rules, and an input

domain model, and then executes the mapping rules on the input domain model to generate

an output domain model.

Each mapping rule is specified using model instance pattern graphs. These graphs are

defined using associated instances of the modeling constructs defined in the source and

destination metamodels. Each instance in a pattern graph can play one of the following

three roles:

• Bind: Match objects in the graph.

• Delete: Match objects in the graph and then delete them from the graph.

• New: Create new objects provided all of the objects marked Bind or Delete in the

pattern graph match successfully.

The execution of a primitive rule involves matching each of its constituent pattern objects

having the roles Bind or Delete with objects in the input and output domain model. If the

pattern matching is successful, then for each match the pattern objects marked Delete are

deleted and then the objects marked New are created. The execution of a rule can also be

constrained or augmented by Guards and AttributeMappings which are specified using a

textual scripting language.
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Figure B.1: MOF Primitive-Typed Attributes Mapped to MetaGME FieldAttributes

GReAT’s third sub-language governs control flow. During execution, the flow of control

can change from one potentially-executable rule to another based on the patterns matched

(or not matched) in a rule. Flow control allows for conditional processing of input graphs.

Furthermore, a graph transformation’s efficiency may be increased by passing bindings from

one rule to another along input and output ports to lessen the search space on a graph.

An example transformation rule is provided in Figure B.1. This figure displays the

MOF2MetaGME transformation rule responsible for mapping String-, Integer-, and Double-

typed MOF Attributes into MetaGME Field Attributes. The black Classes represent model

patterns playing the Bind role, and the blue Classes are those which play the New role1.

The rule finds any MOF Class containing an Attribute with an IsOfType connection to a

PrimitiveType. The guard ensures that only String, Integer, or Double PrimitiveTypes are

matched. If such a Class exists, then the rule finds the corresponding MetaGME Class and

gives it a Field Attribute of the same type as the matched MOF Attribute.

1For those viewing this thesis without the benefit of color, the blue Classes are HasAttribute and Field-

Attribute, while the rest of the Classes are depicted in black.
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Figure B.2: MOF2MetaGME

MOF2MetaGME Implementation Overview

This section outlines the MOF2MetaGME transformation algorithm at the block-and-

rule level. Figure B.2 depicts the overarching structure of MOF2MetaGME.

Packages:

For each top-level MOF Package P, generate a new SheetFolder containing a new Para-

digmSheet both having the same name as P. Output all the top-level Packages and their

corresponding SheetFolders.

NestedPackages:

For each MOF NestedPackage NP, generate a new ParadigmSheet with the same name as

NP and contained in the Folder corresponding to the top-level Package which contains NP.

Output all of the Packages (top-level and nested) in the MOF project.
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Class:

Find and output all of the Classes contained in the various Packages of the MOF project.

Stereotypes:

Map each input MOF Class C into either a Model, Atom, FCO, Set, or Reference object O

depending on the value of its GMEStereotype Tag. Contain O within the ParadigmSheet

corresponding to the MOF Package which contains C. Then, for each ClassProxy CP which

refers to C, generate a proxy object PO which refers to O. Contain PO within the Para-

digmSheet corresponding to the MOF Package which contains CP.

Attributes:

For each Boolean-, Double-, Integer-, or String-typed Attribute owned by a Class C, respec-

tively generate either a BooleanAttribute, Double FieldAttribute, Integer FieldAttribute, or

String FieldAttribute owned by the MetaGME object corresponding to C.

Inheritance:

For each pair of MOF Classes Base and Derived such that Derived inherits from Base,

generate an inheritance relationship such that the MetaGME object corresponding to Derived

inherits from the MetaGME object corresponding to Base.

Association:

Find and output all of the Associations contained in the various Packages of the MOF

project.

ConnectionType:

Find the pair of MOF Classes Src and Dst which respectively define the source type and the

destination type of input Association A. If A expresses composition, generate a Containment

connection from the MetaGME object corresponding to Src to the MetaGME object cor-

responding to Dst. Otherwise, examine the GMEConnType Tag attached to A generate as

appropriate either a SetMembership connection, ReferTo connection, or Connection pattern

from the MetaGME object corresponding to Src to the MetaGME object corresponding to

Dst.
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UserDefinedContainer:

This rule only executes for MOF Associations which map into MetaGME Connection pat-

terns. Generate a Containment connection from the Connection corresponding to input MOF

Association A to Model with name equal to the value of A’s attached AssocClassContainer

Tag.

Constraints:

For each MOF Constraint C constraining MOF model element emphE, generate a Constraint

attached contained by the MetaGME object corresponding to emphE and contained in the

ParadigmSheet corresponding to the Package which contains C.

Aspects:

For each Aspect defined in the MOF project, generate a same-named Aspect in the MetaGME

project. The MetaGME objects visualized in the generated Aspect correspond to the MOF

Classes and Associations assigned to the corresponding MOF Aspect. Note that Aspects are

not a native MOF construct; however, Aspect membership may be represented through the

use of MOF Tags.

PContainer:

Find and output all of the Packages and Classes of the MOF project.

Exception:

For each MOF Exception contained by some MOF Package or Class, generate a MOFEx-

ception registry node in the corresponding MetaGME ParadigmSheet or stereotyped object.

The value of this registry node encodes the fields (Parameters) of the Exception. These Ex-

ceptions may be thrown by MOF Operations, and map into model interpreter C++ exception

classes.

Struct:
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For each MOF StructureType contained by some MOF Package or Class, generate a MOF-

Structure registry node in the corresponding MetaGME ParadigmSheet or stereotyped ob-

ject. Set the value of this registry node to a C++ struct declaration which captures the

fields of the MOF StructureType.

Method:

For each MOF Operation contained by some MOF Class, generate a MOFOperation registry

node in the corresponding MetaGME object. Set the value of this registry node to a C++

method declaration which captures the parameters and return type of the MOF Operation.

Enum:

For each MOF EnumerationType contained by some MOF Package or Class and not acting

as the type of any MOF Attribute, generate a MOFEnumeration registry node in the cor-

responding MetaGME ParadigmSheet or stereotyped object. Set the value of this registry

node to a C++ enum declaration which captures the labels of the MOF EnumerationType.

Typedef:

For each MOF AliasType contained by some MOF Package or Class, generate a MOFAlias

registry node in the corresponding MetaGME ParadigmSheet or stereotyped object. Set the

value of this registry node to a C++ typdef declaration which aliases the type corresponding

to the MOF aliased type.
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