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CHAPTER I  

INTRODUCTION 

The evolution of programming languages shows a clear direction towards higher 

levels of abstraction. This evolution started from assembly languages, went on to 

procedural languages, then to object-oriented languages and now the state of the art is 

component-oriented languages and frameworks. In the same timeframe, top down 

approaches classified as Model Based Software Engineering [7] tried to develop high-

level graphical languages and generate assembly/machine code from them. These 

approaches attempted to bridge large semantic gaps between very-high-level semantic 

models and very-low-level languages. There were many challenges in such an enterprise 

and tool infrastructures and frameworks did not live up to expectations. This led to their 

failure to achieve the goals set by the community. This community found success in more 

rigorous domain-specific fields such as embedded systems where formal and graphical 

models were already in use. An example of such a success is Matlab’s 

Simulink/Stateflow [38] modeling language. With the advent of Unified Modeling 

Language (UML) and Model Driven Architecture (MDA) that advocate the use of models 

in software development, the communities were brought together and are producing 

promising results. 

Languages can also be divided into textual and graphical categories. Graphical 

languages are usually impractical for general-purpose programming but can be useful in a 

limited context in specific domains. We believe that a mixed textual and graphical 

notation can be helpful in limited domains. For example, in the software development 
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domain, the UML [3] specification has both textual (Object Constraint Language) and 

graphical (Use-Case Diagram, Class Diagram, etc.) notations. In hardware development 

domain, tool vendors [39] are now providing a graphical notation for the structural 

description of hardware while the behavioral description is still textual.  

The primary reasons behind the limited success of Domain Specific Languages 

(DSLs) have historically been the following: 

• DSLs are more expensive to create as the development cost and time is borne by a 

small user community 

• Since there is a small user base, tools and support for a DSL is not at par with General 

Purpose Languages (GPLs) and 

• The wide user base and longer life of GPLs helps make the language implementations 

robust and reliable. 

For DSLs to become more popular, the three hurdles mentioned above must be 

addressed. A key limitation is the cost of development (in terms of time and effort), which 

we conjecture can be reduced by creating a framework for developing DSLs. This 

approach has several advantages. First, the framework can be used to develop many 

languages, and thus the cost and time of development is reduced and can be absorbed by 

a larger community. Second, the framework can be the focal point for a wider user base, 

thus making it profitable for industries to provide support and tools. Within the 

framework there will be a development cost for a given DSL that needs to be minimized 

for the framework to be effective. 

In the field of textual languages and compiler design there exists vast literature on 

textual grammars, parsers, parser generators and other formal methods to specify and 
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implement textual languages and compilers. This helps automate the different stages of 

language development and makes it easy to develop and deploy new languages. For 

instance, regular expressions can be used to specify language lexemes and a lexical 

analyzer generator such as Lex [5] can be used to automatically generate the lexical 

analyzer. Similarly, a context free grammar specification can be used to specify the 

language grammar and a parser generator such as Yacc [5] can be use to produce the 

parser. These tools focus on converting a textual notation into tokens and then into trees. 

In graphical languages the starting point is a graph of objects that represents the program. 

The biggest challenge is in converting this graph into another graph (abstract syntax tree) 

of a known programming language. In compiles for textual languages this stage is usually 

straightforward but not much automation is available. For graphical domain specific 

languages theory and tools need to be developed for this stage of the 

compilation/translation. 

Currently, areas such as Generative Programming (GP) [42] and Model Integrated 

Computing (MIC) [1] have tried to explore different methods for the specification of 

domain-specific languages and their compilers. Formal definition and automated 

implementation of model-compilers is one field in this domain that has vast potential. 

Design and development of such a system should be based on a sound mathematical 

foundation.  

Extensions of grammars for textual languages to graphs have been proposed for 

over 20 years and have emerged into a field called graph grammars and transformations. 

Such a foundation can be used for the formal specification and automated implementation 

of model compiler and model-to-model transformers. However, these results have not 
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been applied to the development of methodologies or tools that facilitate the development 

of modeling languages. Applying theoretical work of graph grammars towards the design 

of modeling languages seems to have much potential. Although these concepts cannot be 

applied directly, they can be used as a foundation for addressing the needs and 

requirements of model transformations.  

This dissertation shows how graph grammar and transformation can be used as 

the formal foundation to develop a model-to-model transformation language that can be 

used to specify and automatically implement model transformer. Such a language would 

address the current deficiency of MIC frameworks. 

This dissertation is organized as follows: Chapter I is a survey in the fields of 

model-based software engineering. Generative Programming and Model Integrated 

Computing techniques are explored to study their strengths and weaknesses as a domain-

specific modeling framework. It is followed by a review of the theoretical work on graph 

grammars and transformations in Chapter II to investigate if it may be able to solve some 

problems identified in the meta-programmable tools. A survey of some of the notable 

graph grammar and transformation based tools and evaluation of the tools is presented.  

Chapter III summarizes the findings in the background section and states the 

dissertation proposal along with the goals, completion criteria and metrics for measuring 

success. 

Chapter IV describes Graph Rewriting and Transformation (GReAT) a model-to-

model transformation language based on the theoretical word of graph grammars and 

transformations. The language developed is divided into four parts and each part is 

described along with their motivation, design decisions and tradeoffs. The last part of the 
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Chapter compiles all the language features that were developed to increase the efficiency 

of the execution of the transformations. 

Chapter V describes the tool infrastructure developed for GReAT. First, the 

concrete and abstract syntax of GReAT are described. Then, an interpreter for the 

GReAT called Graph Rewriting Engine (GRE), a debugger called Graph Rewriting 

Debugger (GRD) and a compiler that produces C++ code called Code Generator (CG) are 

discussed. This is followed by the description GReAT’s integrated development 

environment. 

Chapter VI describes the use of GReAT to solve a challenge problem chosen for 

study. The Chapter states the challenge problem, its input and output, the algorithm for 

solving it and the implementation in GReAT. Finally the Chapter draws some 

conclusions about GReAT based on this case study. 

Chapter VII presents results to evaluate whether GReAT and its implementation 

meet the requirements stated in Chapter III. Conclusions are drawn and future directions 

of this work are explored. 
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CHAPTER II  

BACKGROUND 

Model Based Software Engineering 

Software engineering is a discipline where a variety of challenges have to be met 

frequently. These challenges are mainly due to three causes: (1) System complexity: 

inherent complexity of the problem domain, logic and software development. (2) 

Implementation technology complexity and (3) Organization of the development process. 

A great deal of research effort has gone into each of the above mentioned areas and 

specifically in the area of System complexity. To mitigate system complexity there has 

been a continual quest to raise the level of abstraction used for the specification of such 

systems. By raising the level of abstraction the developer do not have to think about the 

finer details that the new abstraction hides and can focus their energies to building bigger, 

better and more complex systems. 

This trend is apparent in programming languages that started from machine 

languages and have evolved to the state of the art in object-oriented and component-

based languages. This quest has also given rise to various model-based techniques that 

use abstractions of the problem domain to specify the solution [7]. 

In engineering models are abstractions of the real world and are used to precisely 

describe and analyze the working of some relevant portions of the physical system. Some 

examples of models are: scaled models of buildings and cars that function in the same 

manner as their real life counter parts.  
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The main benefit of models is that they help in abstracting away irrelevant details 

while highlighting the relevant. Mathematical models are often found in many disciplines 

such as control engineering where the functioning of a plant is described in terms of 

differential equations. Such abstract and formal models are often used for analysis 

through simulation and formal verification. 

The software engineering discipline has only recently begun to adopt modeling. 

Modeling languages that are suitable for expressing various aspects of software have 

been introduced and are being used in the community. Some example languages are 

dataflow and its variants [26][27][28], state machine and state charts [18][19][20][21], 

entity-relationship diagrams [34] and more recently object-oriented modeling languages 

such as UML [35]. Several tools have been implemented that allow graphical 

specification of the structure and behavior of software a subset of the formalisms 

mentioned above. These tools try to automate the process of simulation, verification and 

synthesis of the end system. [7] 

In this Chapter various modeling techniques are studied to find their strengths and 

weaknesses. An attempt will be made to generalize these results to classes of languages. 

The modeling languages studied will be classified based on various criteria. Results of all 

the languages that fall into one class can then be studied to find commonalities. These 

commonalities should provide insight into the general properties that pertain to languages 

belonging to the class. 

Model Classification  

A model is an abstract representation of a system. There are various notations for 

the specification of models and models are used for varied purposes. Modeling languages 
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can be classified based on various attributes. One such classification can be based on 

level of detail captured in the models and it can vary from very precise low-level 

modeling languages to abstract high-level languages. Another classification can be based 

on the scope of the languages; it can vary from general purpose languages to highly 

customized domain-specific language. Modeling languages can also be classified based 

on their notation into visual, textual or both.  

The rest of this Chapter will explore a few of these classifications and try to draw 

conclusions on the merits of the various classes of modeling languages. 

Low-Level and High-Level Modeling Languages 

One criterion for classification is the level of abstraction/detail captured by the 

models. On one hand low-level models, called Models of Computation (MoC) that 

precisely describe how computation is done. On the other hand high-level models are 

used to specify design and intention. In this context low-level languages are defined as 

those that are tightly coupled to the semantics of the underlying machine or to a MoC. 

High-level languages on the other hand are those where a numerous abstractions have 

been built on top of the underlying machine or languages that are closer to a problem 

domain. The next sub section will describe a few low-level and high-level modeling 

languages and compare them. 

The formal definition of Models of Computation (MoC) is: 

 “A formal, abstract definition of a computer. Using a model one can 
more easily analyze the intrinsic execution time or memory space of an 
algorithm while ignoring many implementation issues. There are many 
models of computation which differ in computing power (that is, some 
models can perform computations impossible for other models) and the 
cost of various operations.” 

[8] 
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Model of Computation (MoC) is a platform independent abstraction of a 

computing device. MoCs have precise execution semantics and are not tied to an 

implementation. Generating an implementation from an MoC for a particular platform is 

usually a simple and straightforward process. Examples of widely used MoCs are Finite 

State Machine (FSM), Turing Machine, Discrete-Event and Petri Nets. This section will 

review these MoCs.  

Finite State Machine (FSM) 

Finite State Machines (FSMs) are a state based model of computation where the 

behavior of the system only depends on the current state, and the current input. FSMs are 

defined as: 

“A model of computation consisting of a set of states, a start state, an 
input alphabet, and a transition function that maps input symbols and 
current states to a next state. Computation begins in the start state with an 
input string. It changes to new states depending on the transition function. 
There are many variants, for instance, machines having actions (outputs) 
associated with transitions (Mealy machine) or states (Moore machine), 
multiple start states, transitions conditioned on no input symbol (a null) or 
more than one transition for a given symbol and state (nondeterministic 
finite state machine), one or more states designated as accepting states 
(recognizer), etc.” 

[9] 

Formally, a FSM is defined as a 5-tuple, FSM = (S, Σ, T, s, A) where: 

Σ = {e1, e2, e3, …, en}  is an alphabet set 

S = {s1, s2, …, sm}  is a set of states 

T : S × Σ → P(S)   is a transition function.  

s an element of  S  is the start state  

A a proper subset of S  is a set of accept states  

The Finite State Machine (FSM) representation is useful in describing 

applications that are tightly coupled with their environment. It is also suited for control-
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dominated and reactive applications. However, concurrency is not easily captured and 

results in the exponential growth in the number of states with linear increase in degree of 

concurrency. This problem is known as the “state space explosion” problem. In order to 

overcome these weaknesses of classical FSM, a number of extensions such as hierarchy 

and concurrency have been developed. A few such variants are discussed in brief [18].  

SOLAR [19], a design representation for high-level control flow dominated 

systems is an extension of the FSM representation. Concurrency is achieved by capturing 

parallel components of the system as separate FSMs that communicate with each. The 

communication between FSMs is either with the help of ports that are wired together or 

with the help of communication channels that implement a protocol. Each component can 

either be a FSM or be composed of smaller FSMs. Thus the model allows hierarchical 

decomposition of the system. 

Codesign Finite State Machine (CFSM) [20] is another model based on the FSM. 

It is intended to describe embedded applications with low algorithmic complexity. Both 

hardware and software can be depicted using this model of computation. It can be used to 

partition and implement applications. The basic communication primitive is an event and 

the behavior of the system is defined as a sequence of events. The events are broadcasted 

and have zero propagation time.  This model of computation is used as an intermediate 

representation that high-level languages can map to [18][20]. 

Statecharts by Harel [21] is another extension of FSMs that provides three major 

facilities, namely hierarchy, concurrency and communication. Statecharts are high-level 

Finite State Machines having AND and OR states. The AND states primarily achieve 

concurrency while the OR states are for representing hierarchy. Communication is based 
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on events that are broadcasted instantaneously. This representation is well suited for large 

and complex reactive systems. 

Finite State Machines (FSMs) are a simple yet powerful MoC and can be used to 

represent a wide range of systems from digital logic to communication protocols. FSMs 

have been widely studies and there are well established analysis methods and tools such 

as SMV [10]. However, large problems with concurrent behavior become very difficult to 

express due to the “state space explosion” problem. This prompted the introduction of a 

number of FSM variants. These variants have introduced a number of abstractions to deal 

with concurrency and mitigation of complexity. SOLAR, CFSM or Statecharts can be 

considered as high-level modeling formalisms useful for the specification of large 

problems. Functions can be specified that maps these high-level representations to FSM 

which is a domain- independent, platform-independent MoC. By writing these 

transformations, users not only benefit from the use of high-level modeling languages but 

also from the verification capabilities of the low-level MoC. Furthermore, the abstract 

FSM representation can then be converted to a platform-specific implementation suitable 

for a particular platform. This helps in isolating the implementation from its intended 

behavior as specified by the requirements. 

Turing Machine 

A Turing machine is a computational device that is based on the notion of a tape, 

a read/write head and a controller for the head that is based on a finite state 

representation. It is defined as: 

“A model of computation consisting of a finite state machine controller, a 
read-write head, and an unbounded sequential tape. Depending on the 
current state and symbol read on the tape, the machine can change its 
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state and move the head to the left or right. Unless otherwise specified, a 
Turing machine is deterministic.” 

[11] 

Formally, a Turing Machine (TM) is a represented as a 5-tuple T = (Q, Σ, Γ, q0, 

δ), where 

Q = {q0, q1,…, qm}  is a finite set of states 

Σ =  {s1, s2, …, sn}  is a finite set of symbols called the input alphabet 

Γ is a super set of Σ  is a finite set of symbols called tape symbols 

q0 is an element of Q  is the initial state 

},,{}){(}){(}){(: SLRhQQ ×∆Γ×→ΑΓ× UUUδ   is a transition function 

Here  denotes the blank and R, L and S denote move the head right, left and do 

not move it, respectively and h denotes the halt state. 

∆

A Turing machine consists of an infinite single dimensional tape, a read/write 

head and a finite state machine controlling the actions of the head. Each cell of the tape 

can contain a binary digit (0 or 1). Based on the current state and value at cell, an action 

is performed. The action can write a new value at the current location and possibly move 

the head by one position in either left or right direction. It can also change the state of the 

machine by taking a transition to another state. 

This simple machine is a complete abstraction of a computing device. A Turing 

machine can solve any problem that can be expressed as a general recursive function [12] 

and Turing completeness is used as a measure of the expressiveness of programming 

languages. In practice, programming Turing machines is quite cumbersome. Instead high-

level Turing complete programming languages such as C, C++ are used for programming 

needs. 

12 



Discrete-Event Systems 

Systems that have discrete states and are driven by events over a period of time 

are referred to as Discrete-Event Systems [22]. 

Discrete Event Systems are described at an abstraction level where the 
time base is continuous (R), but during a bounded time-span, only a finite 
number of relevant events occur. These events can cause the state of the 
system to change. In between events, the state of the system does not 
change. 

Hans Vangheluwe 

These systems are asynchronous in nature and react to the discrete events over 

time. An event is considered instantaneous, that is the transition and actions are 

performed in zero time. As opposed to FSMs, Discrete event systems are not restricted to 

finite number of states. In Discrete event systems an event it tied to time while this may 

not necessarily be the case for FSMs.  

Events over time are the primary method of communication between tasks. The 

events are time stamped and are sorted and processed in chronological order. Discrete-

Event Systems are backed with formal mathematical descriptions [23] that facilitate 

formal verification and construction of deterministic systems. Though these systems are 

well suited for real-time applications, the primary disadvantage is the computational cost 

of sorting the events globally to maintain the chronology. 

Petri Nets 

Petri-Nets [24] is a graphical representation introduced by Carl Adam Petri. Petri 

Net is a mathematical tool that can be used to represent diverse semantic domains ranging 

from data-dominated to control-dominated applications. Semantics can be added to the 

models according to the domain. Some example domains are communication protocols, 
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distributed software, compilers and operating systems. A Petri-Net is described as a 5-

tuple, PN={P, T, F, W, Mo} where: 

P = {p1, p2, p3, …. ,pm }   is a finite set of places 

T = {t1, t2, t3, …….,tm }   is a finite set of transitions  

F is a subset of (P x T) U (T x P)  is a set of arcs giving flow relations 

W: F -> {1, 2, 3, … }   is the weight function  

Mo: P -> {0, 1, 2, ….}  is the initial marking  

Places hold tokens, and a transition occurs when the number of tokens required 

for the transition is present in the required places. A transition removes a specific number 

of tokens from its source and adds tokens to its destination. The number of tokens at each 

place in the Petri Net defines its state.  

   
(a)     (b)    (c) 

Figure 1. An Example Petri Net 

Figure 1 shows three stages of an Example Petri Net. Figure 1(a) shows a state 

where there are three people standing on a bus stop and the bus is arriving; Figure 1(b) 

shows the net after two transitions have taken place. The first transition causes one token 

to move from the ‘Bus arriving’ place to the ‘Bus waiting’ place, the second transition 

14 



causes one token to move from ‘Person waiting’ to ‘Person on bus’ place. Finally Figure 

1(c) shows the state of the net after the transition from ‘Bus waiting’ to ‘Bus leaving’. 

The primary features of Petri Nets are concurrency and asynchronicity. Another 

advantage is that a number of mathematical analyses that can be performed on them.  

However, the lack of hierarchy makes Petri Nets difficult to be used for 

developing large systems. Hierarchical Petri Nets (HPNs) [25] have been developed to 

mitigate the complexity of a flat representation. HPNs are modeled using bipartite 

directed graphs with inscription on the nodes and edges. There are two types of nodes, 

transitional nodes that represent activity and places that represent data or the state of the 

system. This approach extends the Petri Net semantics with hierarchy making it suitable 

for complex systems. 

Data Flow Graph 

The classical programming structure of computer-based systems is control based 

as described by the Von Neumann machine. An alternative approach is data-dominated 

where the control flow is determined by availability of data. These systems have nodes 

describing computation, and edges between nodes denoting a data path. If a node has 

sufficient data available on its incoming edges then it is ready to fire and will use the 

input data to generate output data. Transfer of data between computational modules is 

typically done with the help of buffers. This allows the tasks to run independently. 

Formally, a dataflow diagram can be represented as a tuple (C, Df, s) where 

C={c1, c2, … , cn}   is a set of nodes and 

Df  : C → C    is a dataflow relation that captures data dependency 
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s : Df → Integers  is the initial tokens function that defines the initial 

set of tokens in each dataflow relation. 

There exist a number of variants of data flow. The two popular and distinct ones 

are Synchronous Data Flow (SDF) and Asynchronous Data Flow (ADF). In SDF the 

number of token produced and consumed by each node is fixed and needs to be known at 

the system design stage. This requirement allows SDF to be statically scheduled [28]. A 

static schedule is one that can be computed offline, has a finite sequence of execution of 

the nodes and requires bounded buffers where the maximum size of the buffers is known 

beforehand. ADF is defined as a data flow graph with unbounded buffers where 

computations can produce and consume variable number of tokens. Since the 

consumption and production of tokens can change at runtime, ADF cannot be scheduled 

statically and results it a greater run-time cost. However, it can be used to represent a 

large number of systems and is more flexible than SDF. Many extensions have been 

proposed to augment the data flow representation with hierarchy, strong data typing of 

tokens and parameterized nodes. 

High-level models 

High-level models describe systems at a higher level of abstraction. These models 

may be specified with few or no implementation details. A few examples are partial 

differential equations that specify the behavior of a controller [29], block diagrams that 

define the design of system artifacts, and high-level state machines that convey the basic 

behavior of a system. System level modeling languages fall in this category.  

With recent advances in generation technologies, there is a push towards turning 

high-level languages such as UML into executable artifacts. An executable model is one 
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where sufficient information is captured to facilitate the synthesis of low-level details. 

This section will highlight UML as a widely used system-level modeling language.  

Unified Modeling Language (UML) 

Unified Modeling Language (UML) [35] is an Object Management Group (OMG) 

standard for diagrammatically representing object-oriented designs. UML consists of a 

number of diagrammatic representations and an UML class diagram is one of them. Class 

diagrams graphically represent classes along with their member variables and functions. 

Inheritance, aggregation and other associations are also graphically represented. These 

class diagrams are a standardized and clean way to represent the design of complex 

systems. The important aspects of diagrammatic representation are discussed here to 

provide a quick overview.  

Figure 2 depicts the basic notations. A class is represented with the actual name of 

the class in place of the Class Name text. The name in angular braces depicts the 

stereotype of the class. A stereotype states that the class conforms to the strict rule 

defined by the stereotype. For example, in this paper the stereotype <<atom>> is used. 

The atom stereotype states that classes that confirm to the <<atom>> stereotype should 

not contain other classes. Attributes and operations are listed in separate containers 

within the class rectangle.  

Class specialization is depicted using a triangular connector called 

‘discriminator’. The class connected to the top of the triangle is the supertype while the 

classes connected to the bottom are subtypes. Associations between classes are depicted 

by a line between the classes. The roles the classes play in an association and their 

cardinality can be specified on the association. Alternatively an association class can be 
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specified to capture more information about the association. Composition represents a 

special kind of association. It specifies that a composer class can contains instances of the 

composed class and these instances cannot exist outside the composer class. The 

composition is depicted with a line having a solid diamond towards the composer class. 

The role and cardinality of the composing class is also specified on the composition line. 

Cardinality specifies the numeric range of objects that are part of the association. For 

example, class A is composed of 2 instances of class B, then the cardinality of class B in 

this composition is said to be 2. Cardinality can be specified as a fixed number or a 

possible range of numbers. The different notations of cardinality are shown in Figure 2. 

 

Figure 2 Basic notations of UML class diagrams [36] 

Low-Level Vs High-Level 

In the previous sections we have reviewed a few representative low-level and 

high-level modeling formalisms. Low-level MoCs are useful for precise specification of 

computing systems and have direct mappings to a computing device. For instance, FSMs 
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can be implemented using either digital logic or software. Algorithms for mapping a 

MoC to an implementation can be and have been in many cases, fully automated. Thus, 

we can view the low-level MoCs as executable computing devices. However, we have 

seen that these low-level MoCs are not an efficient method for the specification of large 

systems and sometimes do not scale well in their representation. For example, FSMs 

cannot be used for the specification of large parallel systems because of the state space 

explosion problem. Thus, other representations that help mitigate complexity such as 

State Chart and UML are used to describe large systems. 

There exists a gap between the MoCs like FSM and Turing machine, and high-

level representations such as architecture level block diagrams, State Charts and UML. In 

some cases humans are required to comprehend the problem and its solution using high-

level representations and then encode the solution using programming languages such as 

C++ or Java. Some systems provide automated or semi automated programs to convert 

the high-level specification to the equivalent executable code. However, these translator 

programs are often difficult to develop and require a large amount of programming time, 

and effort. 

Domain-Specific and Domain-Independent Languages 

In many domains such as business or scientific computing, the high-level 

representations as well as the MoCs can be very specific. In such cases customized tool 

suites are required to leverage the benefits of the domain and to significantly increase 

productivity. 

This leads to another classification of modeling languages based on the scope. 

Models can be classified as either domain-specific or domain independent. The definition 
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of a domain makes a great difference in this classification. In this paper the universal set 

is considered as the computing domain of computer programs i.e. general recursive 

functions. In this context a domain-specific computing paradigm will be one that does not 

span the entire computing space and/or one that makes a set of assumptions based on the 

domain. 

Domain-Specific Modeling 

Modeling formalisms discussed in the previous section were universal. They 

encompass large domains such software design or the domain of computability. Modeling 

formalisms that are tailored for a specific domain help users specify systems using 

domain concepts they are familiar with. Domain-specific modeling also allows users to 

specify systems at a higher level of abstraction. In such restricted domains, executable 

systems can be synthesized from high-level abstractions as domain knowledge can be 

used to fill in implementation details. There are many successful domain-specific 

languages available, for example Matlab Simulink/Stateflow, Ptolemy and IDEF3. This 

section describes a few of these domain-specific modeling formalisms. 

IDEF3 - Process Flow And Object State Description Capture Method 

The IDEF3 Process Description Capture Method provides a mechanism for 

collecting and documenting processes. IDEF3 captures precedence and causality relations 

between situations and events in a form natural to domain experts. This is achieved by 

providing a structured method for expressing knowledge about how a system, process, or 

organization works [30].  

IDEF3 captures the behavioral aspects of an existing or proposed system. 

Captured process knowledge is structured within the context of a scenario, making 
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IDEF3 an intuitive knowledge acquisition device for describing any system. IDEF3 

captures all temporal information, including precedence and causality relationships 

associated with enterprise processes. The resulting IDEF3 descriptions provide a 

structured knowledge base for constructing analytical and design models. These 

descriptions capture information about what a system actually does or will do and also 

provide for the organization and expression of different user views of the system [30]. 

There are two IDEF3 description modes, process flow and object state transition 

network. A process flow description captures knowledge of "how things work" in an 

organization, e.g., the description of what happens to a part as it flows through a 

sequence of manufacturing processes (see Figure 3). The object state transition network 

description summarizes the allowable transitions an object may undergo throughout a 

particular process. Both Process Flow Description and Object State Transition 

Description contain units of information that make up the system description. These 

model entities, as they are called, form the basic units of an IDEF3 description. The 

resulting diagrams and text comprise what is termed a "description" as opposed to the 

focus of what is produced by the other IDEF methods whose product is a "model." [30] 

 

Figure 3 an Example IDEF3 Process Description Diagram [30] 
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An IDEF3 Process Flow Description captures a description of a process and the 

network of relations that exists between processes within the context of the overall 

scenario in which they occur. The intent of this description is to show how things work in 

a particular organization when viewed as being part of a particular problem solving or 

recurring situation. The development of an IDEF3 Process Flow Description consists of 

expressing facts collected from domain experts in terms of the basic descriptive building 

blocks. [30] 

Ptolemy II – A Polymorphic Design Environment 

Ptolemy is a project dedicated to the modeling, simulation and design of real-

time, embedded applications that started in 1990 at University Of California at Berkeley. 

The focus of Ptolemy is on component-based design. The philosophy of this project is 

using different models of computation and developing an environment that allows the 

mixing of these models of computation to create a heterogeneous application [33].  

Ptolemy is a polymorphous modeling tool used for the simulation of embedded 

applications. Figure 4 shows the design management strategy proposed by the Ptolemy 

project. Design starts with application specification using different models of 

computation and constraints. Different tasks of the system are evaluated and estimates are 

drawn. These estimates decide the hardware and software partition of the application. 

This is followed by hardware and software synthesis and verification. The final stage is 

the integration and system wide simulation [31].  
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Figure 4 Design Methodology Management using Ptolemy [31] 

A Java-based framework called Ptolemy II has been developed that implements 

the project ideas. The framework has an environment for the simulation and prototyping 

of heterogeneous systems. It is an object-oriented system allowing interaction between 

diverse models of computation. The Ptolemy software is extensible and publicly 

available. It allows experimentation with various models of computation, heterogeneous 

designs and co-simulation. The primary feature of Ptolemy is the facility to compose 

various models of computation. Some of the models of computation supported by 

Ptolemy are hierarchical finite state machine, data flow graphs, discrete-event and 

synchronous/reactive systems. After specifying the application using heterogeneous 

models, the next step is to partition the application. This is done using different 

partitioning algorithms like GCLP [32]. Ptolemy facilitates mixed mode system 
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simulation and synthesis. Software synthesis is supported for various models of 

computation along with support for composing these models. Hardware portions of the 

application are synthesized to VHDL. A register transfer level simulator (THOR) has also 

been added for simulating hardware applications [33].  

Other key features of the project are the representation of modern theories in a 

block diagram specification, a modular approach, a mathematical framework for 

comparison of models of computations, and simulation and scheduling of complex 

heterogeneous systems [32]. 

Domain Specific Vs Domain Independent 

Domain Specific Languages (DSLs) can increase productivity by bringing power 

programming to domain users via familiar specialized notations and languages [97]. It is 

well know that GPLs have been more prevalent and successful compared to DSLs, even 

though claims about DSLs’ capabilities to increase productivity are widely accepted [37]. 

The primary reasons behind the limited success of DSLs have historically been the 

following:  

• DSLs are more expensive to create as the development cost and time is borne by a 

small user community 

• Since there is a small user base, tools and support for a DSL is not at par with GPLs 

• The wide user base and longer life of GPLs helps make the language 

implementations robust and reliable. 
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Textual and Graphical Languages 

Another view of languages characterizes them as textual and graphical. Graphical 

languages are usually impractical for general-purpose programming but can be useful in a 

limited context, in specific domains. One of the most successful recent example of a 

graphical domain-specific language is Matlab/Simulink [38] used for simulation and 

control engineering. The notation can use both textual and graphical parts according to 

the requirements of the target domain. For example, in the software development domain, 

the UML [35] specification has both textual (Object Constraint Language) and graphical 

(Use-Case Diagram, Class Diagram, etc.) notations. In hardware development domain, 

tool vendors [39] are now providing a graphical notation for the structural description of 

hardware even though the behavioral description is still textual.  

For DSLs to become more popular the three hurdles mentioned above must be 

addressed. A key limitation is the cost of development (in terms of time and effort). The 

next Chapter is dedicated to various methods for automated generation of software. 

Generative and Model Based Solutions 

This section studies literature on various generative methods for software 

development as well as model based solutions. 

Compiler compilers such as LEX [40] and YACC [41] are representative of the 

first breed of programs that were used for the automated implementation of programming 

languages. Since then a lot of progress has been made in both automated generation tools 

and the languages they develop. A few notable generative fields are Generative 

Programming and Model Integrated Computing (MIC). 
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Generative Programming (GP) 

Generative Programming (GP) is a software engineering paradigm based 
on modeling software system families such that, given a particular 
requirements specification, a highly customized and optimized 
intermediate or end-product can be automatically manufactured on 
demand from elementary, reusable implementation components by means 
of configuration knowledge. 

[42] 

Generative programming focuses on the automation of assembly lines for 

software product families. They elevate the engineering discipline from development of 

single products to the development of product line for a family of products. The salient 

features of generative programming are (1) means to specify family members, (2) 

implementation components and (3) knowledge that maps the family member 

specification to the finished product [42]. 

The process starts with the analysis of a domain. Commonalities and variabilities 

within the domain are defined. Using the domain knowledge a common architecture of 

the domain is designed and a production plan is formulated. Finally the architecture, 

reusable components, domain-specific languages, generators and the production process 

are implemented [42].  

Generative programming can be implemented in various ways ranging from code 

level methods such as generic programming, meta programming and aspect-oriented 

programming to high-level methods such as domain-specific languages/generators and 

intentional programming.  

Generic programming is a term used when a program, module or component is 

built such that it is configurable. Configurability can be achieved by (1) the use of 

parameters and (2) programming using generic reusable abstract types and algorithms. 

Meta programming can be viewed as a special case of generic programming where the 
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programs are written with a lot of built-in variability such that the variability can be 

configured at different stages in the program lifecycle. Aspect-oriented programming is a 

method of abstracting out various aspects of a program. For example, the security issues 

of a program could be captured in a different aspect, making it easy to build systems with 

or without security.  

Domain-specific languages are different than the code based approaches as they 

define a language based exclusively for the domain. The development of the 

infrastructure usually required considerable effort. Intentional programming is a new 

style of programming where the program is captured a set of intentions where intentions 

are the building blocks of the language. Intentions are extensible and users are free to 

write their own intentions. 

Low-level methods can be used in the implementation of the platform and 

reusable components but the assembly and deployment of products still require high level 

methods. 

The remainder of this section will discuss generator technologies such as Draco 

and GenVoca.  

Draco 

Draco is a methodology that encourages the development of domain-specific 

languages and tools for creating software. It was developed by James Neighbors at 

University of California, Irvine in 1980 [43][44].  

In Draco the development cycle starts with a Domain Analyst, a person who has 

built many systems in a given domain. The Domain Analyst describes the variability of 

the domain by defining a Domain Language for expressing systems in the domain. The 
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next step is to define a visualization technique that makes the domain language readable 

to the user. This step is called Prettyprinter Generation. The next step is to specify 

optimizations in the form of Source-to-Source Transformations [43][44].  

After the domain language and the associated tools are developed the next phase 

in the development process for the Domain Designer is to use the language and tools to 

create components and build libraries of components. Components are described as a set 

of refinements. The System Analyst then uses the language and libraries and extends the 

libraries to describe the required system. After the system has been described, a System 

Specialist uses the transformations in an interactive manner to convert the specification 

into executable code [43][44]. 

Genvoca 

GenVoca is a tool and methodology developed by Don Batory. The tool is based 

upon step-wise refinement of domain-specific representation of the system. The next 

generation of the tool suite called AHEAD (Algebraic Hierarchical Equations for 

Application Design) [45] has been recently released. 

The key theme is the composition of features to construct finished products. 

Features are the reusable building blocks of the product family. Various layers of 

abstraction of a product family are identified. A high-level layer then becomes a 

parameter of its lower-level layer. Then components are defined that form families of 

alternatives at each layer. Each product is a particular configuration within the family. 

The primary challenges are identifying the layers and implementing the various 

components. The layered approach helps build a progressive infrastructure from very 

generic configurable components to highly customized domain-specific systems.  
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Summary 

Generative programming techniques are well-suited for the automation of well 

defined and tightly integrated product families. If the product family’s specifications 

change drastically, then a lot of rework is required. Furthermore, support for design and 

analysis of new systems or families of systems is lacking.  

Model Integrated Computing (MIC) 

MIC is a software and system development approach that advocates the use of 

domain-specific models to represent relevant aspects of a system. The models capture 

system design and are used to synthesize executable systems, perform analysis or “drive” 

simulations. The advantage of this methodology is that it expedites the design process, 

supports evolution, eases system maintenance and reduces costs [1].  

The MIC development cycle (see Figure 5) starts with the formal specification of 

a new application domain. The specification proceeds by identifying the domain 

concepts, together with their attributes and inter-relationships through a process called 

metamodeling [1]. Metamodeling is enacted through the creation of metamodels that 

define the abstract syntax, static semantics and visualization rules of the domain. The 

visualization rules determine how domain models are to be visualized and manipulated in 

a visual modeling environment. Once the domain has been defined, the specification; i.e. 

the metamodel of the domain is used to generate a Domain-Specific Design Environment 

(DSDE) through the step called “Meta-Level Translation”. The DSDE can then be used 

to create domain-specific designs/models; for example, a particular state machine is a 

domain-specific design that conforms to the rules specified in the metamodel of the state 

machine domain. The next step is to do something useful with the models such as to 
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synthesize executable code, perform analysis or drive simulators. This is achieved by 

converting the models into another format such as executable code, input language of 

analysis tools, or configuration files for simulators. This mapping of the models to 

another useful form is called model transformation and is performed by model 

transformers [1]. Model transformers (also called “model interpreters”) are programs that 

convert models in a given domain into models of another domain. For instance, a source 

model can be in the form of a synchronous dataflow network of signal processing 

operations, while the target model can be in the form of Petri-nets, suitable for predicting 

the performance of the network. Note that the result of the transformation can be 

considered as a model that conforms to a different metamodel: the metamodel of the 

target [1]. 

 

Figure 5 The MIC Development Cycle [1] 

A Model Integrated Computing (MIC) implementation must have the following 

features. 
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1. Meta framework tools that will be used to describe the syntax, semantics and 

visualization of DSLs.  The meta framework must provide support for the 

specification of a language defined by its abstract syntax, concrete syntax, static 

semantics, dynamic semantics, and visualization. The syntax of a programming 

language describes the structure of programs without considering their meaning. The 

abstract syntax of the language captures the abstract concepts used in the language 

and their relationships. Issues such as type-compatibility are captured in the static 

semantics of the language. Dynamic semantics are defined as the relation of the 

abstract syntax to a model of computation. In other words, it can be considered as a 

mapping from one language to another (provided the model of computation is 

captured in a linguistic framework). 

2. Language framework tools that will be used for the creation, visualization and 

verification of sentences in a domain-specific language. The language framework 

should allow the use of the language in an integrated development environment that 

includes editing and visualizing instances of the language. The framework needs to 

enforce the concrete syntax and static semantics of the language during instance 

creation to provide maximum productivity. The final requirement of the framework 

is to be able to use transformation tools that map sentences of the language into 

sentences of some model of computation [8]. Examples of such models of 

computation are stack machines, process networks, finite state machines, etc. Often, 

although not always, sentences expressed in the target model of computation are 

executable, hence they are called “executable models”. 
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MIC promotes a metamodel-based approach to system construction, which has 

gained acceptance in recent years. The flagship research products following this approach 

are: GME [14], Atom3 [15], DOME [16], Moses [17]. Each implementation has a 

metamodeling layer that allows the specification of a domain-specific modeling 

languages and a modeling layer that allows the creation and modification of domain 

models. 

The Domain Modeling Environment (DOME) 

The Domain Modeling Environment (DOME) is a research project at Honeywell 

Technology Center. DOME has a metamodeling language called “DOME Tool 

Specification”. This is a proprietary language similar to entity relationship diagrams. 

There are two main entities the user can specify, a node and a link. The node represents a 

labeled node in the target language while a link represents a labeled directed edge in the 

target language. Links can be associated with nodes representing a constraint restricting 

the edge to be incident upon a particular kind of node. The language has inheritance; 

nodes can inherit properties from other nodes. Link associations and compositions are all 

described as attributes of nodes or other entities and the visualization does not show these 

associations. Nodes and links can have attributes called “Properties”, these properties can 

be typed.  

Visualization specification is based on a set of basic shapes provided by the 

environment. The set of basic shapes consists of geometric shapes like square, circle, 

rectangle and a few others. The color of node and link types cannot be preset or chosen at 

metamodeling time.  
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There is no support for the specification of static semantics. Thus rules based on 

the value of attribute or based on particular pattern of objects cannot be specified in the 

metamodeling language. However, the user can write functions to implement such 

functionality that is triggered by GUI events.  

There is no support for the specification of dynamic semantics. Dynamic 

semantics is represented and implemented by means of code written in a programming 

language called Alter. 

Moses 

Moses is a modeling, simulation, implementation and verification framework 

funded by Swiss Federal Commission for Technology and Innovation (KTI) and 

developed by the collaboration between Computer Engineering and Networks Lab, ETH 

Zurich, Switzerland and ESEC S.A., Cham, Switzerland [46]. 

Moses has a textual metamodeling language called Graph Type Definition 

Language (GTDL) [48]. The language is used to specify formalisms (modeling 

language). GTDL allows the specification of abstract and concrete syntax of the 

formalism. Vertex and Edge types can be defined in the language. Attributes can be 

defined as a type-name pair. These attributes can then be associated with vertex and edge 

types. Composition is represented by the parent graph type containing an attribute that of 

the child type [48].  

Visualization information of the object is also declared, such as shape, border 

color, fill color, and dimensions [47]. Moses support for static semantic constraints or the 

lack thereof is not clear from either the documentation or direct experimentation with the 

tool [47]. Dynamic semantics are expressed in the form of Java code. They have a 
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simulation platform called Hades that can be extended to support specialized computation 

for each modeling language [47]. Moses supports animation of models by providing an 

extensible base animator class as part of the framework [47]. 

Atom3

Atom3 is a multi-paradigm modeling tool developed at Modeling, Simulation and 

Design Lab (MSDL) in the School of Computer Science at McGill University, Canada. 

Like other MIC implementations, it also supports metamodeling. The metamodeling 

language used by Atom3 is Entity Relationship (ER) diagrams. ER diagrams are used to 

specify the types of entities and their relations allowed in a particular modeling language. 

Typed attributes can be associated with each entity/relationship type. There is no direct 

support for composition or aggregation of entities or relations. The formalisms designed 

using this approach can be considered as flat representations [49][50].  

Static semantics can be specified in the form of either OCL expressions or Python 

scripts which are associated with entities or relations. The user can also specify 

constraints to be pre or post conditions of an editing event [49][50]. 

Dynamic semantics are represented using a graph grammar based transformation 

specification. The specification is converted to a Python implementation [49][50].  

Kent Modeling Framework 

The Kent Modeling Framework (KMF) is under development at the Computing 

Laboratory, University of Kent at Canterbury, England. KMF uses UML 1.3 and XMI 1.0 

as the metamodeling language. UML class diagrams and constraints are fed to ToolGen 

which in turn creates a set of Java files to implement the editor for the desired modeling 

language. The generated Java file can then be compiled to generate a modeling language 
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specific GUI. The lack of proper documentation hindered the successful generation of a 

modeling language [51].  

MetaEdit+ 

MetaEdit+ is a professional tool developed by MetaCase, Finland, that allows the 

specification and implementation of modeling languages. The metamodeling language is 

based on a set of dialog boxes that allow the user to specify domain objects and their 

relations. Properties can be associated with objects. Only flat modeling languages can be 

built using these tools and hierarchy is not supported [52][53]. 

For visualization MetaEdit+ has visualization editor that allows the user to draw 

the visual representation of the objects and to as specify the visualization of properties 

[52][53]. 

Apart from defining the types of objects allowed in the modeling language 

MetaEdit+ supports the definition and use of libraries of object types. These can then be 

used by the domain modeler to assemble a custom language [52][53]. 

Generic Modeling Environment (GME) 

The Generic Modeling Environment (GME) is the main component of the latest 

generation of MIC technologies developed at the Institute for Software Integrated 

Systems (ISIS), Vanderbilt University, USA. GME provides a framework for creating 

domain-specific modeling environments [1]. An important distinguishing property of the 

metamodeling environment of GME is that it is based on UML class diagrams [35] which 

is an industry standard. UML class diagrams are used to capture the syntax, semantics 

and visualization rules of the target domain. The meta-interpreter interprets the 

metamodels and generates a configuration file for GME. This configuration file acts as a 
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meta-program for the (generic) GME editing engine, so that GME behaves like the 

specialized modeling environment supporting the target domain. The core of GME is 

used both as the metamodeling environment and the target environment; the 

metamodeling language is just another domain-specific language that the common editing 

engine supports.  

GME has both a metamodeling environment as well as a metamodel transformer 

that generates a new modeling environment from the metamodels. However, until 

recently there was a lack of generic tools to automatically generate domain-specific 

model transformers. Each model transformer was written by hand and was the most time 

consuming and error-prone phase of the MIC approach. There was a need to develop 

methods and tools to automate and thus, speed up the process of creating model 

transformers. 

The MIC approach described above has gained significant attention recently with 

the advent of the Model Driven Architecture (MDA) by Object Management Group 

(OMG) [2]. MIC can be considered as a particular manifestation of MDA, which is 

tailored towards system construction via domain-specific modeling languages [6]. 

Comparison Of Features 

Most MIC implementations support the specification and implementation of 

syntax and visualization of domain-specific languages. However, support for static 

semantics and dynamic semantics is not adequate. Dynamic semantics are usually 

represented using a general purpose programming language. This makes the code 

complex and difficult to maintain. Atom3 is the only system that provides a graph 

36 



grammar based transformation specification language. The language can be used for 

simple transformations but is not suited for complex transformations. 

Table 1: Comparison of Various MIC Tools 

 DOME Moses Atom3 KMF MetaEdit GME 
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Summary of Model-Based Solutions 

This Chapter reviewed various techniques and associated tools used in the 

automation of the development of a large number of software systems.  

Generative Programming (GP) consists of a variety of techniques used for the 

automated development of product families. GP techniques have the following features 

(1) Capturing the commonalities and the variabilities in the product families, (2) 

Development of a pool of components that can be reused within the family and possibly 

across families and (3) A method for the specification of the assembly. The largest effort 

in these techniques centers on the development of the reusable assets and is the most time 

consuming step. 

Model Integrated Computing (MIC) on the other hand has the philosophy of 

developing domain-specific languages for each domain. Thus MIC tool suites comprise 

tools that facilitate the development of languages. This consists of developing the abstract 

syntax, concrete syntax, visualization, static semantics and dynamic semantics. The 

success of the MIC approach depends on the cost incurred in the development of a new 

language. Most implementations have good abstractions to capture the abstract syntax 

and concrete syntax of the new language. However, static and dynamic semantics are 

usually captured as large and often complex model interpreters. This is the bottleneck of 

MIC and needs to be overcome in order to have a greater impact on the software 

development community.  

To enhance the development of translators that provide dynamic semantics we 

need a way to precisely specify the operation of these translators on categories of models, 

and to then generate code that would perform the translation. However, this task is non-
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trivial as a model transformer can be required to work with two arbitrarily different 

domains and perform fairly complex computations. Hence, the specification language 

needs to be powerful enough to cover diverse needs and yet be simple and usable.  

From a mathematical viewpoint, models in MIC are graphs, to be more precise: 

vertex and edge labeled multi-graphs, where the labels denote the corresponding entities 

(i.e. types) in the metamodel. Using graph theoretic results to solve this problem appears 

to be a possible solution and will be discussed in details in the following section. 

Graph Grammars And Transformations 

Graph transformations and grammars have been an active topic of research for 

well over 20 years. This research can be classified into two broad categories. The first 

category, graph grammars, is an extension of textual grammars and it gave rise to node 

replacement grammars [54][55] and hyperedge replacement grammars [59][60]. The 

second category, graph transformations, researches various mathematical fields such as 

category theory, set theory and algebra and extended it to graphs. The prominent works in 

this area are double pushout [63], single pushout [64] and programmed structure 

replacement systems [65]. The prominent graph transformation tools are AGG [69] and 

PROGRES [68]. 

This section is organized into sub-sections where each sub-section covers a 

particular class of graph grammars or transformation systems. The first sub-section 

discusses node replacement grammars, followed by hyper-edge replacement grammars. 

The next sub-section deals with algebraic approaches while the final sub-section 

discusses programmed graph replacement systems. 
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Node Replacement Graph Grammars 

Node replacement grammars [54][55] are a class of graph grammars that are 

based primarily upon the replacement of nodes in a graph. The basic production of every 

node replacement grammar has an LHS subgraph (called mother graph) that produces an 

RHS subgraph (called daughter graph). Usually the LHS subgraph consists of only one 

node. The nodes that appear in the LHS of a production are similar to non-terminals in 

Chomsky’s Grammar. The production also has a gluing construct that defines how the 

daughter graph will glue to the rest of the graph. Edges in this grammar formalism are 

usually not considered to be first class objects, i.e. they are referred by means of the 

nodes to which they connect. The gluing constructs distinguish one node replacement 

grammar from another [54]. 

Node Label Controlled (NLC) 

NLC is one of the first node replacement grammars that appeared in literature. 

NLC is defined as 5-tuple [54]. 

),,,,( SCPG ∆Σ=  Where 

• - the entire alphabet set (all possible node labels) Σ

• - the alphabet set of terminals (node labels that do not appear on the LHS of any 

production) 

∆

• P  - the set of productions 

• C - the connection relationships (the gluing conditions) 

• S - the start graph 

40 



Each production is defined as a non-terminal node producing a graph with 

terminals and non-terminals along with a set of connection instructions. For example in 

Figure 6 we see a production with X in the LHS and a subgraph on the RHS along with a 

connection relation in the box. The semantics of the production is to first delete the LHS 

from the graph; in this case X is deleted form the graph. Next, the RHS graph is added. 

Then the connections between the input graph and the newly added daughter graph are 

established. A connection relation is a pair of node labels of the form (l, m). If the LHS 

node was adjacent to a node labeled ‘l’ then all nodes in the RHS with label ‘m’ will be 

adjacent to the ‘l’ labeled node. For example, in Figure 6 the relation (c, a) implies that 

each ‘a’ labeled node in the RHS will be adjacent to any ‘c’ labeled neighbor of X [54].  

 

Figure 6 A NLC production 

To make the production more clear let us see an example. In Figure 7 we see that 

(a) is the starting graph. If we apply the production denoted in Figure 6, the first step is to 

remove the LHS of the production, in this case X, then add the daughter graph. The result 

is shown in (b). Next we add the edges between the daughter graph and rest of the graph 

according to the gluing condition to produce the final graph shown in (c) [54]. 
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      (a)     (b)     (c)  

Figure 7 Application sequence of a production 

In NLC, connections are made between node labels. Sometimes it is desirable to 

refer to a particular node while specifying the gluing construct. This gives rise to a 

variation where the connection relationship is of the form (u, x), where u is a node label 

an x is a particular node in the daughter graph. This variation is called Neighborhood 

Controlled Embedding (NCE) and is studied in greater depth in the next section [54]. 

Neighborhood Controlled Embedding (NCE) 

The formal definition of NCE is as follows  

),,,( SPG ∆Σ=  

Where,  are as defined for NLC and P is defined as a production of the form 

P :- X  (D,C) where X  D is the production and C is the connection relationship of 

the form (u, x) where, u is a node label and x is a particular node the daughter graph. 

S,,∆Σ

NCE can be extended with direction on the edges. This gives rise to dNCE. 

Adding labels to the edges and allowing the connection relationship to use edge labels 
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makes the grammar eNCE. If both of the above mentioned extensions are added then we 

get edNCE which is the most popular node replacement grammar. The NCE production 

for the previous example is shown in Figure 8. The production states that X should be 

replaced by the daughter graph shown within the box. The connection relations state that 

every ‘c‘ adjacent to X in the mother graph will be adjacent to the node ‘a’ in the 

daughter and every ‘b’ adjacent to X in the mother graph will now be adjacent to both ‘b’ 

and ‘X’ in the daughter graph [54]. 

 

Figure 8 A NCE production 

In an edNCE system the order of application of the production rules is 

unspecified. Thus different application sequences may lead to different graphs [54].  

For this reason a property called confluence [56] is defined. A NCE grammar is 

said to be confluent if the output graph is the same irrespective of the sequence in which 

the productions are applied. Such grammars are called C-NCE. Confluence is a very 

interesting property as it guarantees the determinism of the productions. One possible 

way of achieving confluence is to have “Boundary” restriction: if all the productions in a 

NCE grammar do not have two non-terminals connected with an edge, and if this 
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property is preserved in the initial graph then, the grammar is guaranteed to be confluent. 

Such grammars are called B-NLC. The boundary condition extends to edNCE grammar 

as well [54].   

The formal definition of edNCE is as follows: 

ddirection  and  γlabeled edge with σ labaled
 node  theoadjacent t be illdaughter w  theof x node then β label edgean  with σ labeled

 node a oadjacent t ismother   theif that means which d)x,,/,( Cy readibilitfor 
out}{in,VΓΓΣC ns.instructio connection ofset  a is C

 andgraph  a is D
 label, node terminal-non a is X

  whereC)(D,X
form  theof isgrammar  edNCE of productionA 

λ and E,V as denoted are H of components The
function. labeling node  theis ΣV :λ

and Γ}γw, vV,wv,|w)γ,{(v,E nodes, ofset  finite a is V
  whereλ),E,(V,  H  tuplea as defined is Γ and over graph  aThen 

 labels. edge allofalphabet an Γandlabelsnodeallofset alphabet an  be ΣLet 

H

HHH

γβσ=
××××⊆

→

→
∈≠∈⊆

=Σ

 

 

Let }',,,,,{ σσbaYX=∑ and }',,,,',,',,',{ 21 δδγγγγββαα=Γ .  

In NCE an important concept is that of composition of embeddings. It is defined 

as follows: Let P1: X1  (H, CH) and P2: X2  (D, CD) be two productions where, 

)},,'/,(),,,/,(),,,/,(),,,'/','(),,,/,{( 21 outyainyYinyYinyoutyCD ααγβγβδγσδγσ=  

and )},,/,(),,,/,{( outuinuCH γβσγβσ= . If H and D are disjoint graphs and the 

substitution of v by (D, CD) in (H, CH) is denoted by (H, CH) [v/(D, CD)] embedding such 

that the embedding has the following property. 
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The property establishes the requirements for confluence of the productions and is 

used to develop variants of the NCE that are confluent. A confluent grammar is one 

where the order of execution of the productions does not affect the outcome. Some 

examples of confluent grammars are boundary NLC and linear edNCE.  

The embedding semantics is shown in Figure 9 where the node in question (X) is 

replaced by the entire graph (D, CD). Then all edges that X was associated with are 

substituted according to the edge substitution CD.  

 

(a) (H, CH)    (b) (D, CD)   (c) (H, CH)[v/(D, CD)]  

Figure 9 Two graphs with embedding and the result of their substitution [54] 
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The above definition of embedding has been proven to be associative in [57], thus 

. Another important property of composition of 

productions is confluence which was proved in [58]. 

]]/[/[]/][/[ DvHwKDvHwK =

Hyperedge Replacement Graph Grammars 

Hyperedge replacement graph grammars [59][60] represents the next class of 

grammars that was studied. The basic philosophy is to replace an edge/hyperedge with a 

subgraph. For example in Figure 10 the edge e is to be replaced by the graph on the RHS. 

begin

end

e
P

 

Figure 10 Hyperedge production 

This production when applied to the graph in Figure 11(a) will remove the edge e 

from graph (a) and insert the graph from Figure 10 to produce the graph in Figure 11(b). 

begin end begin ende
H H [e/P]  

       (a)          (b) 

Figure 11 An example to demonstrate the hyperedge production 

In general the edge to be replaced can be a hyperedge having more than two ends. 

Hyperedge replacement grammars have some interesting properties. The first is 
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sequentialization and parallelization, which states that the productions can be either 

applied in a sequence or all at once. This property holds true because each production 

works on a different edge and thus there can be no interference between them. The next 

property is that of confluence and it states that the order of execution of the production 

does not affect the result. Finally, associativity also holds true which states that if a 

production P1 is applied and then another production P2 is applied to the result will yield 

the same result as the case where P2 is applied first and P1 is applied on the result. These 

properties are formally defined as follows: 

]/]....[/][/e]/,....,/,/e
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Many properties of hyperedge replacement grammars have been proven. A list of 

the theorems is given below: 

1. Context-freeness lemma; it states that hyperedge replacement grammars are context 

free [59]. 

2. Fixed-point theorem; it states that hyperedge replacement grammars are the least 

fixed points of their generating productions [61]. 

3. Pumping lemma generalization; it states that each hyperedge replacement language 

can be decomposed into three hypergraphs FIRST, LINK and LAST such that all 
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sentences of the language can be constructed by a suitable composition of FIRST, k 

samples of LINK and LAST for each natural number k [59]. 

4. Parikh’s theorem; the theorem was originally for context free languages and has 

been extended to hyperedge replacement grammars. It states that for all hyperedge 

replacement languages L and every Parikh mapping m, the set m(L) is semilinear 

[62]. 

There are other interesting results based upon the kind of string languages 

hyperedge replacement can generate and the kind of NP-complete graph languages 

generated from them. 

Algebraic Approach to Graph Transformation 

The next approach to graph grammars is the algebraic approach [63][64]. The 

idea was to generalize Chomsky grammars from strings to graphs. The main aim was to 

come up with a generalization of string concatenation to a gluing construction of graphs. 

The approach is algebraic because graphs are considered a special kind of algebra and the 

gluing is defined by algebraic constrictions called pushouts. The pushout approach has 

been taken from a more general field of category theory and has been applied to the more 

specific field of algebraic theory of graph grammars. There are two basic algebraic 

approaches, (a) Double PushOut (DPO) [63] and (b) Single PushOut (SPO) [64] These 

approaches will be covered in their respective subsections.  

To define an algebraic approach to graph grammars, first graphs have to be 

defined, then graph isomorphism and finally graph replacements have to be defined. 

A graph is defined as two sorted algebras where the set of vertices V and the set 

of edges E are the carriers, and unary operations such as source s: E V and destination 
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d: E V define a relation between vertices and edges. There are labeling functions lv: 

V LV and le: E LE, where LV and LE are the node and edge alphabet set. 

A production defines a partial correspondence between each element of 

its left and right hand side determining which nodes will be preserved, deleted or created. 

The first step of applying a production is to match the LHS of the production in the host 

graph. A match m: L G is a graph homomorphism mapping nodes and edges of L to G, 

preserving the graph structure. Once a match is found for L in the LHR of a production, 

the next step is to remove from G all nodes and edges that have no correspondence in the 

RHS. Similarly those nodes and edges in R and not in L are added to G [54]. 

RLP →:

Double Pushout (DPO) 

The basic approach in double pushout is to start with a subgraph to match in the 

input graph. Then an inverse gluing condition is applied followed by a gluing. Put 

simply, two graphs are drawn. The production is represented as P  => L  K  R. After 

the subgraph L is matched in the host graph the first step is to remove parts of the 

matched graph that correspond to the elements in L and not in K. L is the inverse gluing 

condition and specifies what to delete from the graph. Next portions that are in R and not 

in K are added to the graph. This is the gluing condition. For example in Figure 12 we see 

that if we have a client (c) performing a job, it can stop the job, raise a request and then 

start performing the job again. In DPO we would say that when we find a client with a 

job, the production would first remove the job and then add a request and a job. 
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Figure 12 DPO production  

In the algebraic approaches, concepts such as parallel application of productions 

have been defined. Parallelism in this approach can be defined in two ways: (1) based on 

the sequential processor model and is defined as a set of productions where the order of 

application doesn’t affect the result. (2) a truly parallel definition where the productions 

are applied in parallel using one processor per production. The first approach is called 

sequential independence while the second is explicit parallelism. Two productions are 

said to be sequentially independent if they are not causally dependent and two 

productions are parallel if they are mutually exclusive.  

For explicit parallelism there is a need to define means that will facilitate the truly 

parallel application of the productions. Two approaches have been suggested. The first 

approach is called amalgamation, which specifies that if there are two productions P1 and 

P2 then the amalgamated production 21 0 PP p⊕ should be present such that the 

production P1 and P2 can be applied in parallel and the amalgamated production P0 that 

represents the common parts of both the productions should be applied once. The control 

of application of productions has also been studied. Productions can be arranged into 

sequential and parallel flow.  
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There is another approach to parallelism in which the graph G is broken down 

into two parts and distributed to different processors 21 0
GG G⊕ and then the common 

part G0 is used to put them together.  

Single Pushout (SPO) 

SPO specifies only one pushout that performs both the addition and deletion of 

nodes and edges. This causes ambiguity when two pattern nodes are mapped to the same 

node in the host graph and one pattern node is preserved in the pushout while the other is 

not. In SPO higher precedence is given to the deletion and thus in such cases the node 

will be deleted as shown in Figure 13. 

 

Figure 13 SPO production and example 

Programmed Graph Rewriting Systems 

The last section in this Chapter is on programmed rewriting systems [65]. These 

represent the set of practical rewriting systems and have more working implementations 

than theorems. The pioneers in this field are the developers of PROgrammed GRaph 

REplacement System (PROGRES [68]).  
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This section is broken down into three sub-sections. The first discusses graph 

replacement systems. The second deals with programmed graph replacement systems and 

how to apply control flow mechanisms to the graph replacement system. The third sub-

section discusses PROGRES’s approach to programmed graph rewriting. 

Logic-Based Structure Replacement System 

This section [65] critiques graph replacement system and points out their 

deficiencies. The problems with algebraic and other such graph replacement systems in 

practice are the following: 

1. A lack of static integrity constraints on graphs 

2. Specification of derived attributes and relations 

3. The implicit use of depth first search and backtracking. 

These lead to the development of PROGRES that addresses the problems stated 

above. PROGRES uses structure replacement as its mathematical model to define graph 

replacements. Graphs are defined as structures with certain properties. In order to provide 

integrity constraints, a signature is defined  

A signature is defined as a 5-tuple  

purposetion quantificafor  used  variableslogcal ofalphabet an  is 
objects of sets ngrepresenti constants ofalphabet  special a is 

constants identifierobject  ofalphabet  special a is 
symbols predicate ofalphabet an  is 

symbolsfunction  ofalphabet an  is 
 where),,,,(:
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ω
ν
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PF A

Α
Α

Α=Σ

 

In structure replacement systems, graph semantics have to be defined. Below is 

the definition of a class of graphs that show people, their income and relationship to other 

people  
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AF defines symbols for node labels, edge labels, attribute types, attribute values 

and evaluation functions. 

AP consists of four predicate symbols that define this structure to be a graph 

• Node(x,l): graph contains a node x with label l 

• Edge(x,e,y): graph contains edge, labeled ‘e’ that is incident on x and y 

• Attr(x,a,v): attribute a at node x has value v 

• Type(v,t): attribute v has type t 

V is a set of arbitrarily chosen constant names that are used to refer to single 

objects in the graph while W is a set of names used to refer to a set of objects matched in 

the graph. X is a set of names used for quantification purposes. 

A structure is defined as a set of formulas. For example a structure of the person 

database can be F:={node(Adam, man), node(Eve, woman), node(Sally, woman),… , 

attr(Adam, income, 5000), attr(Eve, income, 10000), …., edge(Adam, wife, Eve), 

edge(Eve, child, Sally), . } 

A schema defines all the possible structures that are legal. It is defined as a set of 

implications and equivalences. For example, 
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A Structure replacement rule is defined as a quadruple  
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For the example in Figure 14 the content of these sets is: 
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In simple words, a replacement production consists of a LHS subgraph, a RHS 

subgraph, a guard and attribute mapping constructs. The subgraphs have concepts such as 

negative edges, sets of nodes, optional nodes and edges. 
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Figure 14 A production in the PROGRES system 

The example production in Figure 14 demonstrates most of the language features. 

The production specifies a pattern containing a man and woman vertex such that they are 

not brother/sister and are not married. The RHS of the production create an edge called 

wife from woman to man. In the production, brother is a negative edge in the LHS. The 

children nodes are dashed which means they are optional and the matcher should match 

0..* children for the given parent and thus showing the optional feature and the feature to 

match a set of nodes. The RHS of the rule specifies that a wife edge should be added and 

child edges should be added to the matched pattern. Apart from the LHS and RHS, there 

are constraints, which should evaluate to true for the rule fire. PROGRES also has a 

language to specify attribute mapping of the patterns.  

Programmed Structure Replacement Systems 

This section deals with the organization of the rules. In traditional graph 

grammars the execution semantics for rule execution is defined based on the availability 
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of the LHS in the graph. Other approaches deal with issues such as production priority 

and regular expressions to specify rule fire sequences and control flow graphs. The author 

identified some desirable characteristics of the control flow. They are: 

1. Boolean nature: Application of a transformation should result in either success or 

failure. 

2. Atomic character: A sequence of replacement steps should modify the graph if and 

only if all of its intermediate steps succeed. 

3. Consistency preserving: The replacements have to preserve the consistency as 

specified by separately defined integrity constraints.  

4. Nondeterministic behavior: A single rule replaces any match of its LHS. 

5. Recursive definition: Transformations should be allowed to call other 

transformations without restrictions. 

To fulfill these criteria PROGRES uses operators defined by Dijkstra in [66] and 

extended by Nelson in [67] to produce a formal language that can be verified using 

proofs. The constructs used are: 

• Skip – Always returns true and relates a given graph to itself. 

• Loop – will either loop forever or crash. 

• Def(a) – an action that succeeds if a returns true. 

• Undef(a) – an action that succeeds if a returns false. 

• (a ; b) – a sequential execution of a followed by b. 

• (a | b) – a nondeterministic choice between a and b. 

• (a & b) – returns the intersection of results of a and b. 
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Summary of Graph Grammars and Transformations 

This section discussed the various graph grammars and transformations 

approaches published in literature. These include node replacement grammars, hyperedge 

replacement grammars, algebraic approaches, and programmed graph replacement 

systems.  

Graph grammar techniques such as node replacement and hyperedge replacement 

grammars are direct extensions of textual grammars and are well suited for the 

specification and recognition of graphical languages. In textual languages, grammar is 

used primarily for parsing raw textual streams into tree data structures. Unlike textual 

languages, graphical languages are built with a database/data-structure backend and do 

not require a parsing phase. Grammars have the ‘execute when LHS sub graph found’ 

semantics: whenever a pattern is found in the host graph the particular rule in question 

will fire. This brings about two different issues. The first is that of confluence: the effect 

of the execution of the rules in different orders and the second is efficiency. Sub-graph 

isomorphism is an NP complete problem and thus the time complexity of the 

implementations is also a concern. 

Graph transformations take a different approach than that of grammars. Here the 

focus is on the transformation of a graph, including addition/deletion and modification of 

the graph. Algebraic approaches such as single and double pushout are transformation 

methods. They define transformations as algebraic constructs and take care of confluence 

by the use of sequencing of rules. However, the sequencing constructs are primitive and 

not adequate for specifying complex transformations. These transformation languages do 

not provide traversal strategies. The most mature of the transformation systems is the 
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Programmed Structure Replacement System (PSRS) which uses the structure 

replacement as the basis of the transformation. On top of the transformation there is a 

high-level control flow language for the explicit sequencing of rules. PSRS also has a few 

drawbacks as a language for model-to-model transformation. This language was 

developed to perform manipulations on databases and can only perform graph 

manipulations within the same domain. 

Graph Transformation Based Tools 

The theory described above has given rise to many tools. Prominent amongst 

these tools are PROGRES [68], AGG [71], DiaGen [82], GenGEd [83], VIATRA [84]. 

Out of these tools PROGRES, AGG and VIATRA support general purpose graph 

transformation languages while DiaGen and GenGEd are visual language environments. 

PROGRES 

Programmed Graph Replacement System (PROGRES) is a tool developed at 

Lehrstuhl für Informatik III, University of Technology Aachen (RWTH Aachen), 

Germany.  

PROGRES consist of an editor for the specification of the graph domain. The 

domain/type system is defined using a proprietary textual language called Schema. 

Schema has advanced type concepts such as inheritance, composition, implicit and 

explicit attributes [65][68]. 

Transformations are specified in Programmed Structure Replacement, a language 

with control flow semantics on top of the graph transformation. Graph transformations 
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are specified using a graphical editor and can be embedded in the textual control flow of 

the transformation [65][68]. 

AGG 

The domain tools of AGG consist of a graphical editor for the specification of 

type graphs. Type graphs are the language used to specify the type system for the 

domain. Users can create node and edge types and specify the type requirement for the 

source and destination of the edges. The type system is simplistic and lacks concepts such 

as composition and inheritance. The type system does not have support for semantic 

constraints, that are based on attributes. Furthermore, a project can have only one type 

graph. Type checking based on the type system can be enabled and/or disabled very 

easily. There is limited support for the specification of the visualization features of 

vertices and edges [69][70][71]. 

The graph tools of AGG consist of a graphical editor for the specification of the 

graphs. Graphs can be created using types defined in the type graph. Alternatively, the 

user can disable the type graph and define node/edge types while creating the host graph 

[71]. 

The transformation tools include a visual transformation specification editor and a 

transformation engine that can perform the transformation. The transformation language 

used is single pushout. The visual editor allows the users to create and execute the rules. 

Additionally, a Java API is also provided that can be used to perform the transformation. 

A proprietary XML format called ggx is used to store graphs, transformation rules and 

the type graph [71]. 
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Comparison of Features 

A set of requirements was created and it was used as the basis of comparison. The 

feature set chosen for the comparison is divided into three groups. (1) Domain 

Specification: A set of features required to describe and enforce the graph domain. (2) 

Graph Specification: A set of features required to specify graphs in each tool and (3) 

Transformation Specification: A set of features required to specify and execute the 

transformations. 

Table 2: Comparison of Graph Transformation Tools  

  AGG PROGRES ATOM3

Language Type graph Schema ER-diagrams 
Notation Graphical Textual Graphical 
Inheritance ----- Supported Not supported 
Attribute Types Supported Supported Supported 
Constraints Not Supported Not Supported Not supported 
Multiple domains Not Supported Not Supported Supported 

D
om

ai
n 

Sp
ec

ifi
ca

tio
n 

    
Format Ggx format GRASS database  
Editing method Graphical Database manipulation Graphical 
Composition Not supported Not supported Not supported 
Domain 
enforcement  

Optional By the database By visual editor G
ra

ph
 

Sp
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ca

tio
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Language Single Pushout Programmed Structure 

Replacement System Graph Grammar 

Notation Graphical Textual & graphical Dialog based Graphical 

Pattern 
Specification 

Single cardinality Single Cardinality Single Cardinality 

Between Domains Not Supported Not Supported ?? 

T
ra
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fo

rm
at

io
n 

Sp
ec
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Critique of Graph Transformation Tools 

Graph grammar techniques such as node replacement grammars, hyperedge 

replacement grammars, and algebraic approaches such as the ones used in AGG do not 

provide sufficiently expressive mechanisms for controlling the application of 
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transformation rules. PROGRES has a rich set of control mechanisms; however, they 

only perform transformations within the same schema. Schema [68] in PROGRES and 

type graphs [71] in AGG can be considered as a graph grammar that specifies a family of 

allowed graphs. If semantics is assumed for the types in these schemas/type graphs then 

they considered as the specification for a domain. These specifications capture structural 

and integrity constraints that the graphs must conform to. In both PROGRES and AGG 

the transformations can only be written such that the graph conforms to a single domain 

specification. That is, the graph must at all times conform to the singleton schema/type 

graph. Transformations that convert a graph belonging to one schema/type graph to 

another one conforming to a different schema/type graph are not possible in these 

systems. 

In MIC, a domain is represented by a metamodel, and the model transformations 

typically transform models/graphs that conform to one metamodel to models/graphs that 

conform to a completely different metamodel. For example, a model transformer may be 

required to convert models/graphs belonging to the “state machine” domain to 

models/graphs conforming to the “flow chart” domain. The graph transformation system 

must provide support for these transformations across heterogeneous domains. There is 

yet another problem: maintaining references between the different models/graphs. During 

the transformations it is usually required to link graph objects belonging to different 

domains.  

To illustrate the point let us consider a very simple transformation that needs to 

transform models conforming to one domain to another. For sake of simplicity let the 

source domain have one vertex type V1 and one edge type E1. Similarly, the target 
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domain has one vertex type V2 and one edge type E2. The transformation’s aim is to 

create a vertex in the target for each vertex in the source and an edge in the target 

corresponding to each edge in the source such that: 

2212,2211 11 VvVvEeEe ∈∃⇒∈∀∈∃⇒∈∀  Relation 1 

A simple algorithm could first create a target vertex for each source vertex and 

then create the edges. To create a target edge e2 that corresponds to the source edge e1 

we need to find the vertices in the target that correspond to the source vertices e1 is 

incident upon. This information needs to be saved in the first phase of the transformation 

for use in the second phase, and can be considered as maintaining a reference between 

two graphs. There are other examples where referencing is not that easy, for example, a 

transformation that determines the cross product of two sets of vertices to generate a new 

set of vertices. In this case each pair of source vertices should reference a single target 

vertex. A method is required to specify and use this information.  

The existing graph grammars and transformations are based on powerful 

mathematical concepts but not well suited for the specification and implementation of 

model transformers as described. Hence, a new approach that targets the specific needs of 

model-to-model transformation is required. 
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CHAPTER III  

RESEARCH PROBLEM, HYPOTHESIS AND METHODS 

Model Integrated Computing (MIC) [1] advocates the use of domain-specific 

concepts to represent system design. Domain-specific models are then used to synthesize 

executable systems, perform analysis or drive simulations. Using domain concepts to 

represent system design helps increase productivity, makes systems easier to maintain 

and evolves and shortens the development cycle [1].  

Object Management Group (OMG) has proposed the use of models as a complete 

specification of software artifacts. In their recent initiative called Model Driven 

Architecture (MDA) [2] the aim is to allow developer to model software without thinking 

about its implementation platform. Such a model is called a Platform Independent Model 

(PIM). A PIM can then be transformed into a Platform Specific Model (PSM) for a 

platform with the help of automated generators. The language proposed for the 

specification of such PIMs and PSMs is UML 2.0. 

MIC can be considered as a methodology for Domain Specific MDA (DSMDA) 

where the focus is on developing the MDA process for specific domains. An 

implementation of DSMDA should consist of a Domain Specific Modeling Environment 

that allows users to describe systems using domain concepts. This environment is then 

used to develop Domain Specific Platform Independent Models (DSPIMs). These models 

represent the behavior and structure of the system with no implementation details. Such 

models then need to be converted to a Domain Specific Platform Specific Models 

(DSPSM). DSPSM could either be based on the use of domain-specific libraries and 
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frameworks or not have any domain-specific information. It is a term that covers all 

possible platform based models.  

Domain Specific MDA however, has its own problems such as high development 

cost, lack of standardization, and lack of vendor support [6]. These problems can be 

tackled by developing a framework to support the creation and use of Domain Specific 

Modeling Environments (DSME). The cost of the framework is distributed over all the 

projects built using it. Recurring needs can be factored out and implemented once in the 

framework. The framework can also help in the standardization of DSME specifications, 

thus providing a common vocabulary and standards based interfaces for vendors.  

There are a set of minimal requirements that such a framework must fulfill. In 

order to reduce the time required for the development of DSMEs, the framework must 

provide tools to speedup each aspect of DSME creation. In Chapter III the section on 

Model Integrated Computing (MIC) lists a set of basic features the framework should 

support. 

Tools such as GME [14], Atom3 [15], DOME [16] and Moses [17] already 

provide a major portion of the framework support. Among these tools GME supports the 

greatest number of features (see Table 1). Currently however, dynamic semantics are 

specified and implemented using code. DSME developers spend a significant amount of 

time and energy in writing code that implements the transformation from Domain 

Specific Platform Independent Model (DSPIM) to Domain Specific Platform Specific 

Model (DSPSM). 

For a framework to be successful, it should significantly lower the time required 

to specify and implement DSMDAs. This includes the specification and implementation 
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of the dynamic semantics. A high-level specification language is required for the 

specification of model transformers. An execution framework can then be used to execute 

such specifications. Currently, the specification and implementation of the dynamic 

semantics of domain-specific languages requires significant effort and is the bottleneck in 

the MIC process.  

To speed up the development of DSMDAs a formal methodical approach needs to 

be developed for the specification and automatic implementation of model transformers. 

Design of such a language is non-trivial as a model transformer can work with arbitrarily 

different domains and can perform fairly complex computations. The specification 

language needs to be powerful enough to cover diverse needs and yet be simple and 

usable.  

When observed from a mathematical viewpoint, models in MIC are graphs, more 

precisely they are typed, attributed multi-graphs. Thus, the model transformation problem 

can be converted into a graph transformation problem. We can use the mathematical 

concepts of graph transformations [54] to formally specify the intended behavior of a 

model interpreter.  

In Chapter II we saw that graph grammars and graph transformations have been 

recognized as a powerful technique for specifying complex transformations that can be 

used in various situations in a software development process [74][75][76][77]. Many 

tasks in software development can be formulated using this approach including weaving 

of aspect-oriented programs, [78] application of design patterns [76], and the 

transformation of platform-independent models into platform specific models [6].  
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Graph grammars have been developed mostly for the specification and 

recognition of graph languages while graph transformations have been developed with 

the intention of manipulating the source graph into the target graph. For model 

transformations however, graph rewriting, i.e. when a source graph is traversed to 

produce a second disconnected graph is required along with transformations. One of the 

primary differences between transformation and rewriting is that in transformation the 

input and the output graph both belong to the same family of graphs while in a rewriting 

these graphs could belong to different families. These graph families are specified with 

the help of different constructs. For example, PROGRES uses a language called Schema 

for specifying the graph family while AGG use the notion of type graphs. A family of 

graphs forms a domain that specifies the set of all allowable graphs a 

transformation/rewriting can handle. In a rewriting the domain of the input graph may be 

different from the domain of the output graph. In summary, the following features are 

required in the transformation language: 

1. The transformation language should have a sub-language for the specification of 

graph domains. 

2. The domain specification language should use a well know language or be based on 

one. 

3. The transformation should use the type information from the domains to strongly 

type the transformations 

4. Often rewriting graphs belonging to one domain into graphs that belong to another 

domain is required.  

a. The language should support the specification of multiple domains. 
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b. It should have constructs that allow users to write rewritings where the 

input and output graphs are disjoint and do not even belong to the same 

domain. 

5. The computational power of the transformation language should be comparable to a 

Turing machine to ensure that any transformation conceivable can be handled by it. 

6. The language should be capable of transforming/rewriting any number of 

graph/domain pairs, not just two. There could be n input graphs and m output graphs 

and these graphs can belong to any number of domains. 

7. The language focus should be on constructs that allow users to write efficient 

transformations. 

8. The language should have efficient implementations of its programming constructs. 

The implementation should be comparable to its equivalent hand written code. 

9. The language should have a formal mathematical foundation that can facilitate the 

formal verification of transformations by theorem proving or other formal 

techniques. 

Research Hypothesis 

“A Metamodel based transformation language using graph rewriting and 

transformations that support multiple graphs (that may belong to different domains) with 

an efficient implementation is suitable for the specification of model transformers. Such a 

language should help shorten the time taken to develop model transformers and allow for 

formal proof of correctness of the transformations.” 
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Research Methods 

The aim of the dissertation is to define a language for model-to-model 

transformations based on graph grammar and transformations techniques. The language 

development is based on identifying requirements of model transformations and then 

researching how these needs can be fulfilled by simple and formal constructs. 

Requirements were gathered by looking at various target applications and by creating a 

list of challenge problems. Two challenge problems were been chosen: 

1. Generate a non-hierarchical Finite State Machine (FSM) [9] from a Hierarchical 

Concurrent State Machine (HCSM) representation similar to Statecharts [21]. This 

problem introduces interesting challenges. To map concurrent state machines to a 

single machine there is a need for complex operations that include computing the 

Cartesian product of the parallel state space. Evaluation of this particular 

transformation requires a depth-first bottom-up approach and will test whether the 

system can allow different traversal schemes. 

2. Generate from a given Simulink/Stateflow model the equivalent Hybrid Automata 

[99]. This is another non-trivial example as the mapping is not a straightforward one-

to-one mapping.  It is not even obvious if the problem can be solved in the most 

general case. The algorithm used to solve this problem converts a restricted 

Simulink-Stateflow model to its equivalent hybrid system. This algorithm has some 

interesting steps such as state splitting, reachability analysis and special graph walks 

that make it a challenging problem to solve. 

The complexity of the example problems gives confidence that if solutions to 

these problems can be specified in the new language and efficient code can be generated 
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from such a specification then the language will be expressive enough to be used to solve 

a large number of non-trivial real world problems.  

The next step is to develop language constructs that can solve these challenge 

problems. Development of language constructs includes its syntax, visualization, 

semantics and algorithms for its execution. These language constructs should then be 

evaluated on the basis of expressiveness, generality and efficiency. A few candidate 

constructs will then be implemented in the execution engine to further evaluate them. 

A large part of this research effort focused on the execution framework for the 

language. Initially a working, non-optimized framework was used to test the language 

constructs. The framework was made flexible to try out different constructs and 

algorithms. It was then used to test different algorithms and the execution of language 

constructs. 

Completion Criteria 

The completion criteria were that the developed language and execution 

framework should meet the requirements specified in this Chapter and it should be able to 

successfully solve the challenge problems. Two criteria were developed to measure the 

success of the language.  

The first criterion was the expressiveness of the language. It should have all the 

language constructs required to specify the challenge problems and the implementation of 

the languages should be able to provide working solutions to them. This criterion is 

aimed to measure the ability of the language to express solutions to complex problems. 

Measures such as Turing completeness can be used to prove the computational power of 

the language. 
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The second is the usefulness of the language for solving model-to-model 

transformation problems. This can be argued by demonstrating language constructs in the 

new languages and how they may be better than the traditional approaches. User 

feedback can also be used to validate the theoretic claims. Measures such as the time 

taken to solve a problem in the new language verses hand code can also be used to further 

strengthen the case. 
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CHAPTER IV  

GREAT: A MODEL-TO-MODEL TRANSFORMATION LANGUAGE 

To address the requirements laid out in the dissertation proposal and to validate 

the research hypothesis a model-to-model transformation language was developed. The 

language is called Graph Rewriting And Transformation (GReAT). This language has 

four distinct parts: 

 Heterogeneous Transformations. 

 Pattern Specification language. 

 Graph transformation language. 

 Control flow language. 

Heterogeneous Graph Transformations  

Many approaches have been introduced in the field of graph grammars and 

transformations to capture graph domains. For instance, schemas are used in PROGRES 

[68] while AGG [69] uses type graphs. These approaches are specific to the particular 

systems and each have some features that others cannot replicate. Standards like UML 

are widely used in the software community today, are well understood and are able to 

express a super set of the constructs allowed in the other langauges. For these reasons we 

have chosen to follow the UML route. It was also a pragmatic decision, as UML was 

used in the tools that were used for developing the language.  
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Figure 15  Metamodel of hierarchical concurrent state machine using UML class diagrams. 

In model-to-model transformations the input and output graphs are object 

networks whose “schema” can be represented using UML class diagrams and expressions 

in the Object Constraint Language (OCL) [87]. UML provides a rich language to specify 

structural constraints while OCL can be used to specify non-structural, semantic 

constraints. Thus, a UML class diagram plays the role of the graph grammar as it can 

describe all the “legal” object networks that can be constructed within the domain. 

Finally, UML can also be used to generate an object-oriented API that can be used to 

traverse the input graph and to generate the output graph. GReAT allows the user to 

specify any number of domains that can be used for the transformation. Figure 15 shows 

a UML class diagram that represents the domain of Hierarchical Concurrent State 

Machines (HCSM) and Figure 16 shows the metamodel of a Finite State Machine (FSM).  
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Figure 16 Metamodel of a simple finite state machine 

There is yet another problem that is maintaining references between the different 

models/graphs. During the transformations it is usually required to link graph objects 

belonging to different domains.  

To illustrate the point let us consider a very simple transformation that needs to 

transform models conforming to one domain to another. For sake of simplicity we 

consider that the source domain has only one type on vertices V1 and only one type of 

edges E1 and that the target domain has again only one type of vertices V2 and only one 

type of edges E2. The transformation’s aim is to create a vertex and edge in the target set 

for each vertex and edge in the source set: 

2212,2211 11 VvVvEeEe ∈∃⇒∈∀∈∃⇒∈∀  Relation 2 

(where  means “precisely one”). A simple algorithm could first create a target 

vertex for each source vertex and then create the edges. To create a target edge e2 that 

corresponds to source edge e1 we need to find the vertices in the target that correspond to 

the two source vertices e1 is incident with. This information needs to be saved in the first 

phase of the transformation for use in the second phase, and can be considered as 

maintaining reference between two graphs. There are other examples where the 

referencing is not that easy, for example, in a transformation that determines the cross 

product of two sets of vertices to generate a new set of vertices. In this case each pair of 

source vertices should reference a single target vertex.  

1∃
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This problem was tackled in GReAT by using an additional domain to represent 

all the cross-domain links. Apart from using UML to specify all the different domains 

that will be used for the transformation, UML is also used to specify a temporary domain 

that contains the information of all the types of cross-links the transformation needs. For 

example, Figure 17 shows a metamodel that defines associations/edges between HCSM 

and FSM. The State and Transition are classes from Figure 15   while the FiniteState and 

FiniteTransition are classes from Figure 16. This metamodel defines three types of edges. 

There is a refersTo edge type that can exist between State and FiniteState and between 

Transition and FiniteTransition. Another edge type associatedWith is defined and it can 

exist between State objects.  

 

Figure 17 A metamodel that introduces cross-links 

Cross-links can be defined not only between different domains but can also be 

used to extend a domain to provide some extra functionality required by the 

transformation. By using a separate domain to specify the cross-links we are able to tie 

the different domains together to make a larger, heterogeneous domain that encompasses 

all the domains and cross-references. This also helps us to have the same representation 

for cross-links and for domain edges.  
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Definitions 

Before describing GReAT, some initial definitions are presented in this section. 

Graphs used in the GReAT language are typed and attributed multi-graphs and are 

defined below. 

Vertex: A vertex V is a pair: (class, attrs), where class is a UML class, and attrs is 

a map that maps each defined attribute of the class into a value.  

Edge: An edge E is a 3-tuple (etype, src, dst), where etype is the association the 

edge belongs to. In UML, simple associations are distinguished by their endpoint classes. 

This information can be considered as an “edge type”. The association classes in UML 

can also be distinguished using two edges: one from the source class to the association 

class and another one from the association class to the destination class. Src and dst are 

the vertices that the edge is incident upon. The class of these vertices must be identical to 

the endpoint classes of etype. 

Graph: A graph G is pair (GV, GE), Where GV is a set of vertices in the graph 

and GE is the set of edges and GVdstGVsrcGEdstsrcetypee ∈∧∈∈=∀ ,),,( . 

Match: A match M is a pair (MVB, MEB), where MVB is a set of vertex 

bindings and MEB is a set of edge bindings. Vertex binding is defined as a pair (PV, 

HV), where PV is a pattern vertex and HV is a host graph vertex. Similarly, edge binding 

is a pair (PE, HE), where PE is a pattern edge and HE is a host edge. The match must 

satisfy the following property. 
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The match does not have any restriction that specifies that each pattern object 

must have a binding. This is intentional, as the match is also used to specify partial 

matching of pattern graphs. The default behavior of the pattern matcher is to have a 

unique match for every pattern vertex however there are cases when this is not desirable. 

The Pattern Specification Language 

A full graph transformation language is built upon a graph pattern specification 

language and pattern matching. Graph patterns allow selecting portions of the input (host) 

graph, and thus specify the scope of individual transformation steps. The specification 

techniques found in graph grammars and transformation languages 

[54][65][69][70][78][79][80][81] were not sufficient for our purposes, as they did not 

follow UML concepts. This section introduces an expressive yet easy to use pattern 

specification language that is closely related to UML class diagrams. 

Recall that the goal of the pattern language is to specify patterns over graphs (of 

objects and links), where the vertices and edges belong to specific classes and 

associations. In this language we will rely on the assumption that a UML class diagram is 

available for the objects. The UML class diagram can be considered as the “graph 

grammar,” which specifies all legal constructs formed over the objects that are instances 

of classes introduced in the class diagram. 

Simple Patterns 

A simple pattern is one in which the pattern represents the exact subgraph. For 

example, if we were looking for a clique of size three in a graph, we would draw up the 

clique as the pattern specification. These patterns can be alternatively called single 
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cardinality patterns, as each vertex drawn in the pattern specification needs to match 

exactly one vertex in the host graph.  

These patterns are straightforward to specify; however, ensuring determinism on 

such graphs is not. In this case, determinism means that given a graph and pattern the 

match returned should be the same from one execution of the pattern matcher to another 

and from one matching algorithm to another. Pattern matching in graphs is non-

deterministic and different matching algorithms may yield different results. 

Consider the example in Figure 18(a). The figure describes a pattern that has three 

vertices P1, P2 and P3, each of type T. The pattern can match with the host graph shown 

in Figure 18(b) to return two valid matches, {(P1,T1), (P2,T3), (P3,T2)} and {(P1,T3),  

(P2,T5), (P3,T4)}. For sake of brevity matches are considered as a set of vertex bindings, 

edge bindings have been ignored as they can be inferred from the vertex bindings. We see 

that the result of the matching depends upon the starting point of the search and the exact 

implementation of the algorithm.  

 

 (a) Pattern   (b) Host graph 

Figure 18 Non-determinism in matching a simple pattern 

The solution for this problem is to return the set of all the valid matches for a 

given pattern. The set of matches will always be the same for a given pattern and host 

graph.  
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Returning all the matches however, has a time complexity of , where C)C(O pC
h h is 

the number of host vertices and Cp is the number pattern vertices. To make the pattern 

matching usable it needs to be optimized. One approach is to start the pattern matcher 

with an initial context. A context is used to start pattern matcher with an initial partial 

match. For example, in Figure 18 the pattern matcher could be started with a binding 

{(T1,P1)}. Thus, the context for the matching is the host vertex T1 and the matcher will 

return only one match {(P1,T1), (P2,T3), (P3,T2)}. The initial binding reduces the search 

complexity in two ways, (1) the exponential is reduced to only the unmatched pattern 

vertices, and (2) only host graph elements within a distance d from the bound vertex are 

used for the search, where d is the longest pattern path from the bound pattern vertex. 

An algorithm for matching such kinds of patterns is given in Appendix A. The 

algorithm takes as input the pattern, host graph and a partial match and returns a set of 

matches. The partial match must have at least one vertex of the pattern bound to the host 

graph. It uses a recursive approach to solving the matching problem and returns a set of 

matches. There are cases where the pattern matcher has to be used on the entire graph 

without restricting it to a context. This can be achieved by running the pattern-matching 

algorithm for each host vertex. 

Fixed Cardinality Patterns 

If we need to specify a string pattern that starts with an ‘s’ and is followed by 5 

‘o’-s. The ‘o’ could enumerate five times and write the patter as “sooooo”. However, this 

is not a scalable solution and a representation format is required to specify such strings in 

a concise and scalable manner. For strings a notation could be devised where the pattern 
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is written as “s5o” and the semantic meaning of such the notation would be that o needs 

to be enumerated 5 times.  

 

 (a) Pattern  (b) The graph it will match 

Figure 19 Pattern specification with cardinality 

The same argument holds for graphs, and a similar technique can be used. The 

pattern vertex definition can be changed to a pair (class, cardinality), where cardinality is 

an integer. Vertex binding can also be redefined as a pair (PV, HVS), where PV is a 

pattern vertex and HVS is a set of host vertices. For example, Figure 19(a) shows a 

pattern with cardinality on vertices. The pattern vertex cardinality is specified in angular 

brackets and a pattern vertex must match n host graph vertices where n is its cardinality. 

In this case the match is {(P1,T1), (P2,{T2, T3, T4, T5, T6})}.   

The fixed cardinality pattern and matching also have non-determinism. Even in 

this case the issue can be dealt with by returning all the possible matches. If all the 

possible matches are returned, there is a problem of returning a large number of matches. 

For example in Figure 19, if the host graph contained another vertex T7 adjacent to T1 

then the number of matches returned would be 6C5 (all combinations of 5 vertices out of 

6). Thus, 6 matches will be returned and each having only one vertex different from the 

other.  
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A more immediate concern is how this notion of cardinality truly extends to 

graphs. In strings, there is an advantage of a strict ordering from left to right, while 

graphs don’t. By just extending the example in Figure 19 with another pattern vertex we 

see that the specification is ambiguous. 

Figure 20(a) shows a pattern having three vertices. There are different semantics 

that can be associated with the pattern. One possible semantic is to consider each pattern 

vertex pv to have a set of matches equalling the cardinality of the vertex. Then an edge 

between two pattern vertices pv1 & pv2, implies that in a match each v1, v2 pair are 

adjacent, where v1 is bound to pv1 and v2 is bound to pv2. This semantic when applied 

to the pattern in Figure 20(a) gives the graph in Figure 20(b).  

 

(a) Pattern with three vertices 

 
(b) Set semantics 
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(c) Tree semantics 

Figure 20 Pattern with different semantic meanings 

The algorithm to search the host graph for a set of matches according to the 

above-mentioned semantics is given in Appendix B. This algorithm is a direct extension 

of the algorithm in Appendix A. 

The set semantics will always return a match of the structure shown in Figure 

20(b), and it does not depend upon the factors like the starting point of the search and 

how the search is conducted. However, with set semantics it is not obvious how to 

represent a pattern to match the graph shown in Figure 20(c).   

Another possible semantics could be the tree semantics: If a pattern vertex pv1 

with cardinality c1 is adjacent to pattern vertex pv2 with cardinality c2, then the 

semantics is, each vertex bound to v1 will be adjacent to c2 vertices bound to v2.  Let b1 

= (pv1,V1) and b2 = (pv2,V2) be the bindings for pv1 and pv2 respectively. 
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Relation 3 

This semantics when applied to the pattern gives Figure 20(c). The tree semantic 

is weak in the sense that it will yield different results for different traversals of the pattern 

vertices and edges. For the traversal sequence pa, pb, pc the graph shown if Figure 20(c) 

is obtained while for the traversal sequence pa, pc, pb a different graph as shown in 
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Figure 21 is obtained. Another problem with tree semantics is that graphs like the one 

shown in Figure 20(b) cannot be expressed in a concise manner. 

 

Figure 21 Conflicting match for the tree semantics 

Both set and tree semantics discussed so far are incomplete in the sense that 

certain pattern matches cannot be expressed with them. Choosing either one compromises 

the expressiveness of the language. Also the tree semantics also brings in a different form 

of non-determinism because different traversal sequences yield different results. 

Fortunately, there is a pragmatic solution that solves all the problems: to use a more 

expressive, extended set notation. 

Extending the Set Semantics 

If we want to specify a string “sxyxyxy”, we see that “xy” is repeated 3 times. 

Extending the notation used before we would express it as “s3(xy)”. Using parenthesis 

we were able to represent the fact that the “xy” sequence should occur 3 times. A similar 

notion can be used in graphs as well. That is, by grouping vertices of a pattern to form a 

sub-pattern, a larger pattern can be constructed using these sub-patterns. If a group 
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consists of a sub-pattern that has cardinality n then n sub graphs need to be found. 

Another important point here is that while in strings the ordering of each element of the 

group is implicit, in graphs we have to explicitly specify the connectivity. Pattern edges 

that cross groups are used for this purpose. 

To illustrate this point, Figure 22(a) shows the pattern that would express the 

graph in Figure 20(c) and Figure 22(b) shows the graph the expresses the graph in Figure 

21. With respect to the pattern P in Figure 22(a) there will be exactly one vertex PB that 

will connect to exactly 2 vertices of type PC. The larger pattern will consist of the 3 sub 

patterns of the type described by P. The resulting graph that will be matched is shown in 

Figure 20(c). 

The above exercise illustrates two points. First, set semantics along with the 

grouping notion can express all the graphs that tree semantics can express and second, the 

semantics are still precise and map to exactly one graph. 

 
(a) Pattern for Figure 20(c) 

 
(b) Pattern for Figure 21 

Figure 22 Hierarchical patterns using set semantics 
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At this point it is apparent that a variety of graphs can be expressed in an intuitive, 

concise and precise way. However, a large number of graphs are missing from the 

Grouped Set Semantics (GSS) described above: these graphs are those having more than 

one edge for the same pair of vertices. 

Cardinality for Edges 

Adding cardinality to pattern edges helps us express additional graph patterns in a 

compact manner. Another example is called for and is shown in Figure 23. The figure 

shows a pattern with cardinality on the edge. The semantic meaning is an extension of 

Relation 1. Let b1=(V1,pv1) and b2 defined as 

)2,1(,22,11
1

vveVvVv n
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n=
∃∈∈∀  

Relation 4 

The extension is that instead of having one edge between each pair of vertices 

there can be C edges where C is the cardinality of the pattern edge. 

 
(a) Pattern (b) Matching Host graph 

Figure 23 Pattern with cardinality on edge. 

Variable Cardinality 

Sometimes, the sub graph to be found is not of a particular structure but can 

belong to a family of graphs. Suppose a string needs to be matched such that it starts with 
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‘s’ and is followed by 1 or more ‘b’s. Therefore, the pattern specification represents a 

family of strings. This can be expressed with the help of regular expressions, such as 

“s(b)+”. In the general case the number of ‘b’s can be bound by two numbers, the lower 

and upper bound. To extend the example let us consider that 5 to 10 ‘b’s could follow the 

‘s’. By extending the regular expression notation slightly, we can come up with a notation 

“s(5..10)(b)”.  

Using a similar method for graphs, the notation of cardinality to be variable of the 

form (x..y), where the lower bound is x and the upper bound is y. Hence a particular 

pattern vertex should match at least x host graph vertices and not more that y host graph 

vertices. The upper bound can however be *, representing no limit. This approach can 

also be used to specify optional components in a pattern by having the cardinality of 

optional components as (0..1). 

 
(a) Pattern  (b) Family of graphs 

Figure 24 Variable cardinality pattern and family of graphs 

Figure 24 presents a variable cardinality pattern. The pattern in Figure 24(a) 

specifies that 3..10 P2s can be connected to a P1, thus the family of graphs represented is 

given in Figure 24(b). The required portion must be present while the optional part may 

or may not be present. Finally the specification language has been extended to express a 

truly large set of graphs.  
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However, there are a few problems with variable cardinality. Consider the pattern 

in Figure 24(a) and suppose that there is a graph having T2..T11 connected to T1 in the 

host graph. Should the pattern-matching algorithm return only one match namely the 

entire host graph or all possible sub graphs with cardinality 3, 4 till 10. The way this 

question is answered is that if more than one match occurs; then both the matches will be 

returned if and only if neither match is a proper subset of the other. Thus the matches 

returned would each be maximal and consistent with respect to the pattern. 

12^21,2,1 mmmmMmm ⊄⊄∈∀  Relation 5 

Relation 3 states that from the returned set of matches there should not be any two 

matches such that one is the subset of the other.  

This construction yields a precise and consistent language, which can be used to 

specify complex patterns in a concise manner.  

Pattern Graph and Match Definition  

After the discussion on the specification of patterns we can now define pattern 

vertices, edges and graphs. 

A pattern vertex PV is a pair: (class, cardinality), where class is a UML class 

defined in the heterogeneous metamodel and cardinality is a pair (lower bound, upper 

bound).  A pattern edge PE is a 4-tuple (etype, src, dst, cardinality), where etype is the 

association the edge belongs to. Src and dst are the pattern vertices that the edge is 

incident upon. The class of these vertices must be identical to the endpoint classes of 

etype.  A pattern graph PG is pair (GPV, GPE), where GPV is a set of vertices in the 

graph and GPE is the set of edges and GPVdstGPVsrcGPEcdstsrcetypepe ∈∧∈∈=∀ ,),,,( . 
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The definition of a match can also be suitably revised to a pair (MVB, MEB), 

where MVB is a set of vertex bindings and MEB is a set of edge bindings. Vertex binding 

is defined as a pair (PV, HV), where PV is a pattern vertex and HV is a set of host graph 

vertices. Similarly edge binding is a pair (PE, HE), where PE is a pattern edge and HE is 

a set of host graph edges. The match must satisfy the following properties.  
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Graph Rewriting/Transformation Language 

The graph transformation language is inspired by many previous efforts such as 

[69][70][72][80][81]. It defines the basic transformation entity: a production/rule. A 

production contains a pattern graph. These pattern objects each conform to a type: class 

or association from the metamodel. Apart from this, each pattern object has another 

attribute that specifies the role it plays in the transformation. There are three different 

roles that a pattern object can play. They are: 

bind: The object is used to match objects in the graph. 

delete: The object is used to match objects, but once the match is computed, the 

objects are deleted. 

87 



new: After the match is computed, new objects are created.  

The execution of a rule involves matching every pattern object marked either bind 

or delete. If the pattern matcher is successful in finding matches for the pattern, then for 

each match the pattern objects marked delete are deleted and then the objects marked new 

are created. Since the pattern matcher returns all matches for the pattern, there can be a 

case where a host graph object is deleted from a match while the next match still has a 

binding for it. The delete operation checks for such a situation and if it exists it does not 

perform the delete and returns failure. Thus, only those objects can be deleted that are 

bound exactly once across all the matches.  

Sometimes, the patterns by themselves are not enough to specify the exact graph 

parts to match and we need other, non-structural constraints on the pattern. For example, 

“an integer attribute of a particular vertex should be within a range.” These constraints 

can be descibed using a constraint language such as Object Constraint Language (OCL) 

[87], a widely used standard that is directly related to UML, the metamodeling language 

of GME. There is also a need to provide values to attributes of newly created objects 

and/or modify attributes of existing objects. This done via “attribute mapping”.  

The formal definition of a production is as follows: A production P is a triple 

(pattern graph, guard, attribute mapping), where  

 Pattern graph is a graph (in the definitions section). 

 Pattern Role is a mapping for each pattern vertex/edge to an element of role = 

{bind, delete, new}. 
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 Guard is a boolean-valued expression that operates on the vertex and edge 

attributes. If the guard is false, then the production will not execute any 

operations. 

 Attribute mapping is a set of assignment statements that specify values for 

attributes and can use values of other edge and vertex attributes. 

Language Realization 

The goal of GReAT is (1) to transform models that (a) belong to one meta-model 

into models that belong to another meta-model or (b) to transform models within one 

meta-model, and (2) to maintain the consistency of the models with respect to their meta-

models. Hence, it is important that the language only allows the user to draw patterns that 

conform to the meta-models.  

To maintain consistency and provide usability in GReAT, the following use case 

is defined. The use case is supported through the services of the modeling environment 

(GME).   

 The user first imports the input and output metamodels in the form of libraries. 

 Next, the user specifies a seperate metamodel that defines all the temporary 

vertices and edges that will be need for the transformation.  

 After attaching and specifying these metamodels the user can then draw 

productions/rules that specify patterns.  

Figure 25 shows an example rule. The rule contains a pattern graph, a Guard and 

an AttributeMapping. Each object in the pattern graph refers to a class in the 

heterogeneous metamodel. The semantic meaning of the reference is that the pattern 

object should match with a graph object that is an instance of the class represented by the 
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metamodel entity. The default action of the pattern objects is Bind. The New action is 

denoted by a tick mark on the pattern vertex (see the vertex StateNew in figure). Delete is 

represented using a cross mark (not shown in figure). The In and Out icons in the figure 

are used for passing graph objects between rules and will be discussed in detail in the 

next section.  

 

Figure 25 An example rule with patterns, guards and attribute mapping 

GReAT relies on UML metamodels for defining patterns. Furthermore, the 

patterns are also specified in (a superset of the) UML syntax. Since the modeler uses 

UML for metamodeling it was more intuitive to describe the rules in UML too. By 

making the user reference each pattern object, the consistency of the patterns and thus the 

consistency of the transformations is enforced. 

The Language For Controlled Graph Rewriting And Transformation 

Since the pattern matcher is exponential in the number of pattern vertices there is 

a need to devise methods to keep this complexity in manageable limits. The performance 

of the pattern matching can be significantly increased if some of the pattern variables are 

bound to elements of the host graph before the matching algorithm is started (effectively 
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providing a context for the search). The initial matches are provided to a transformation 

rule with the help of ports that form the input and output interface for each 

transformation step. Thus, a transformation rule is similar to a function, which is applied 

to the set of bindings received through the input ports and results in a set of bindings over 

the output ports.  For a transformation to be executed, graph objects must be supplied to 

each port in the input interface. In Figure 25 the In and Out icons are input and output 

ports respectively. Input ports provide the initial match to the pattern matcher while 

output ports are used to extract graph objects from the rule so that they can be passed 

along to the next rule. The rules thus operate on packets, which are defined as sets of 

(port, host graph object) pairs. 

 

Figure 26: UML class diagram for the abstract syntax classes of GReAT: The core transformation classes 

The next concern is the application order of rewriting productions. Classical graph 

grammars apply any production that is feasible. This technique is good for generating and 

matching languages but model-to-model transformations often can and need to follow an 
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algorithm that requires a more strict control over the execution sequence of rules, with 

the additional benefit of making the implementation more efficient.   

In order to better manage complexity in transformation programs it is important to 

have higher-level constructs, like hierarchical rules and control structures in the graph 

rewriting language. For these reasons GReAT supports (1) the nesting of rules and (2) 

control structures. We show these capabilities here using the classes that form the abstract 

syntax tree of the language. The common abstract base class for the language is 

Expression as shown in Figure 26, and all other constructs like Rules and Blocks are 

derived from it. The derivation implies a shared base semantics: all these classes 

represent some kind of graph transformations.  

Figure 27 shows input-output interfaces (Ports) of the Expressions (In and Out), 

as well as sequencing (Sequence), the pattern class objects (PatternClass) and their 

connection to the ports (Binding).  The interface of the expressions allows the outputs of 

one expression to be the input of another expression, in a dataflow-like manner. This is 

used to sequence expression execution.  

 

Figure 27: UML class diagram for the abstract syntax classes of GReAT: The interface 
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A CompoundRule can contain other compound rules, Tests, and PrimitiveRules.  

The primitive rules of the language are to express primitive transformations. A Test is a 

special expression and is used to change the control flow during execution.  

The control flow language has the following basic control flow concepts. 

 Sequencing – rules can be sequenced to fire one after another 

 Non-Determinism – rules can be specified to be executed “in parallel”, where the 

order of firing of the parallel rules is non deterministic.  

 Hierarchy – CompoundRules can contain other CompoundRules or Expressions 

 Recursion – A high-level rule can call itself.  

 Test/Case – A conditional branching construct that can be used to choose between 

different control flow paths.  

Note that the approach followed here can be considered as a highly specialized 

version of the transformation unit concepts introduced in [95]. The hierarchical rules can 

be viewed as graph transformation modules, but in GReAT the control condition is 

restricted. Also, GreAT does not address the issue of transactions, as all rule execution is 

assumed single-threaded.  

Sequencing of Rules 

If the output interface of a rule is associated with the input interface of another 

rule, they will execute sequentially.  Figure 28 shows the flow of packets through the 

rules. The packets are shown as a vertical set of letters where each letter refers to host 

graph object. The packet objects map to the ports of a rule in the vertical layout. Thus, the 

top graph object is bound to the top port and so on. Figure 28(a) shows the initial 

condition where there are two input packets on the input interface of Rule 1. Rule 1 will 
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fire, consume all its input packets and produce a number of output packets as shown in 

Figure 28(b). Then rule 2 will fire, consume all its input packets to produce a number of 

output packets (shown in Figure 28(c)). 

 
(a) 

 
(b) 

 
(c) 

Figure 28 Firing of a sequence of 2 rules 

Hierarchical Rules 

There are two kinds of hierarchical “container” rules: (1) Block, and (2) 

ForBlock. Both Block and ForBlock have the same semantics with respect to rules 

connected to them.  Thus, if in Figure 28 the rules 1 and 2 were hierarchical, then they 

would have had the same effects as described above. All the semantic differences are 

internal to the hierarchical rules. 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 29 Rule execution of a Block 

The Block has the following semantics: it will push all its incoming packets 

through to the first internal rule (i.e. it is same as the regular rule semantics). The input 

interface of the block can be attached to the input interface of any internal block or to the 

output interface of the block. In other words the block can send output packets from any 

internal rule or pass its input packets as output. However, the output interface of a block 

must be attached to exactly one interface and it cannot be attached to two different 

interfaces. Figure 29 illustrates the execution of rules within a block. Figure 30 illustrates 

the case when the output interface of a block is connected to the input interface of the 

same block. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 30 Sequence of execution within a Block 

The ForBlock has different execution semantics than the Block. If there are n 

incoming packets then the first packet will be pushed through all its internal rules to 

produce output packets and only then the next packet will be taken. The semantics are 

illustrated with the help of an example in Figure 31.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 31 Rule execution sequence of a ForBlock 

Similar to the block the input interface of the ForBlock can also be associated 

with the input interface of any internal rule or the output interface of itself. 
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Branching using test case 

There are many scenarios where the transformation to be applied is conditional 

and a “branching” construct is required. In such casses GReAT supports a branching 

construct called Test/Case.  

The external semantics of a Test/Case is similar to any other rule. When fired or 

executed it consumes all its input packets to produce some output packets. The internal 

working of a test is a bit different from other blocks. In a Test all cases get their inputs 

from the input interface of the Test. Unlike a Block or a ForBlock the execution of the 

case is not non-deterministic but is based on the physical placement of the cases. The 

cases are evaluated in a top-down order. Cases can only match, not make changes to the 

graph. Even if a Case succeeds all other cases are executed. This can be concidered as a 

series of if statements in a regular programming langauge without the else. There is a 

construct called Cut which if enabled will stop the Test after the first successful Case. 

Figure 32 shows a Test with two cases. The Test has one input interface and two 

output interfaces ({OR1, OP1} and {OR2, OP2}). When the test is fired each incoming 

packet is tested and placed on the corresponding output interface. 

 
(a)    (b) 

Figure 32 Execution of a Test/Case construct 

The test must contain at least one Case, and a case is a rule with no output pattern 

and no actions. It contains a pattern (containing bind objects only), a guard condition and 

98 



an input/output interface. If the pattern matches and the guard evaluates to true, then the 

case succeeds and the input packet given to the case is passed along, otherwise the case 

fails. 

 
(a)   (b) 

Figure 33: Execution of a single Case 

Figure 33 shows a case with a successful execution. The input packet has a valid 

match and so the packet is allowed to go forward. In Figure 34 the execution of a test is 

shown. An input packet is replicated for each case. Then the input packet is tried with the 

first case, it succeeds and is copied to the output of the case. Since the Cut is not enabled 

in the first case the packet is tried with the second case, this time it fails and the packet is 

removed. Finally, after all input packets have been consumed the output interfaces have 

the respective packets. 

 
(a)    (b) 
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(c)     (d)  

 
(e) 

Figure 34 Inside the execution of a Test 

Non-deterministic Execution  

When a rule is connected to more than one follow-up rule, or when there is a test 

with more than one successful case, then the execution becomes non-deterministic. The 

execution engine chooses a path non-deterministically, and the path that is chosen is 

executed completely before the next path is chosen.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Figure 35 A non-deterministic execution sequence 

Figure 35 shows a non-deterministic execution sequence. Here the non-

deterministic execution is caused due to a test/case but it could also have been due to a 

rule connected to more than one other rule. After the branch there are packets at both the 
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output interfaces of the test. Thus, both rule 2 and rule 4 are ready to fire. Rule 2 is 

chosen non-deterministically and fired, followed by the execution of the following rules. 

This ends at rule 3. Then rule 4 and 5 are fired. 

Termination 

At one point, the transformation must terminate. A rule sequence is terminated 

either when a rule has no output interface or when a rule having an output interface does 

not produce any output packets. 

If the firing of a rule produces zero output packets then the rules following it will 

not be executed. Hence in Figure 35, if rule 4 produced zero output packets then rule 5 

would not have been fired. 

Enabling Optimized Graph Transformations  

This section highlights language features in GReAT that facilitate the 

development of optimized transformations.  

Typed Patterns 

It is well known that subgraph isomorphism is an exponential time algorithm in 

terms of the input graph and the pattern graph  where n is the number of nodes in 

the input graph and p is the number of nodes in the pattern graph. In order to reduce the 

average case execution time a number of steps can be taken. 

)( pnO

The first step is to type the pattern vertices and edges. This restricts the search to a 

subgraph of the host that only contains the particular types used in the pattern. If we 

consider a host graph having say T types of vertices and if we assume that the vertices 
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have even distribution with respect to its type then the time complexity of matching a 

pattern with Pt types of vertices is ⎟
⎠
⎞

⎜
⎝
⎛ × pt n

T
P

O )( . Even though the worst case execution 

time is  the expected case execution time will be reduced. )( pnO

Pivoted Pattern Matching 

Another optimization technique is to start the pattern matcher with an initial 

binding and we have named it “pivoted pattern matching”. In this technique the 

programmer provides an initial binding for some of the models in the pattern graph to the 

host graph nodes. The pattern matching is then performed in the context of the initial 

binding. 

In Figure 36, the pattern vertex Pv is initially bound to the host vertex Hv. This 

restricts the search to the area shown within dotted line. This particular optimization 

technique works well for sparse graphs. Consider a graph that has an average degree (the 

number of edges incident on a vertex) of 3 and the greatest distance from the pivot to a 

vertex in the pattern graph of 2. Then the matching algorithm will only search within a 

tree of depth 3 starting from the pivoted node. In general the number of host graph 

vertices included in the search will be where c is the connectivity and d is the depth of 

the pattern. Hence the order complexity of the matching algorithm is  where 

 and p is the number of unbound pattern vertices. 

dc

)( pnO

dcn =
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Figure 36 Pivoted Matching 

Pivoted pattern matching optimization, when added to the typed pattern vertex 

technique gives a significant saving because in this case the connectivity of the restricted 

graph is even less. Figure 37 shows a rule with In and Out ports that have been used to 

provide the initial binding. The OrState pattern vertex is bound to a host graph vertex 

supplied by the port labeled In. 

 

Figure 37 Transformation Rule with pivot 

Reusing Previously Matched Objects 

The next optimization technique used in the GReAT is the called “Reusing 

previously matched objects”. The idea here is to cache previously found results and pass 

it on to subsequent rules as the initial binding. 
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For example, in Figure 38, there are two rules. The first rule gets an input binding 

for Parent and finds all ChildA, ChildB, Assoc triples that correspond to the pattern. In 

the subsequent rule these triples are required to perform an action. Instead of finding the 

pattern again, the first rule passes the triples along to the next rule. For the next rule they 

serve as the initial binding. When a rule executes it can produce multiple matches. Each 

match produces a host graph object for each output port and this coherent set of objects is 

called a packet. These packets are sent to the subsequent rules as one unit. 

User Controlled Traversal 

GReAT supports hierarchical specification of transformation rules. High-level 

rules can be created by composing a sequence of primitive rules. There are two kinds of 

high-level rules in GReAT: Block and ForBlock. The execution semantics of the Block is 

to pass all input packets to the first contained rule, the outputs packets created by it are 

passed to subsequent rules and so on. After all packets have been processed and all output 

packets of the Block have been generated, the Block returns control to its parent. 

Semantics for the ForBlock is to pass one input packet at a time through all the contained 

rules. After the first packet has been processed all the way to the output of the ForBlock 

the next packet is processed. These two constructs enable the user to choose different 

traversal strategies. A Test/Case is also available in GReAT. It can be used to choose 

between different execution paths, during the transformation and is similar to the ‘if’ 

statements in programming languages. 
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Figure 38 Sequence of rules with passing of previous results 

106 



CHAPTER V  

THE EXECUTION FRAMEWORK FOR GREAT 

This Chapter describes the execution framework that we built for GReAT. This 

infrastructure can be divided into the following parts. 

1. Concrete Syntax: the realization of the transformation language. 

2. Abstract Syntax: a syntax that is void of any concrete representation 

such that various concrete representations can be mapped to this 

format. 

3. Execution Engine: a virtual machine that can execute GReAT 

programs on a given input to produce output.  

4. Debugger: debugging support on top of the virtual machine to provide 

debugging functions such as single step as well as a visual debugging 

interface. 

5. Code Generator: the equivalent of a compiler that will consume a 

GReAT program and produce C++ code that has the same behavior as 

the GReAT program. 

6. IDE, Integrate development environment: an environment that 

consists of an editor, concrete syntax, mapping to abstract syntax and 

integration with the engine, debugger and code generator. 

These components of GReAT will be discussed in details in the following sub 

sections.  
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Concrete Syntax 

The concrete syntax of GReAT is implemented by a paradigm called UML Model 

Transformer (UMT) and it contains three parts. 

(1) A metamodeling syntax that allows users to attach metamodels in the form 

of UML class diagrams and to create temporary/cross associations. 

(2) A concrete syntax for the transformation. This includes syntax for pattern 

specification, transformation specification and control flow specification. 

(3) Syntax for configuring the execution of the various transformations.  

The metamodeling syntax is a restricted subset of UML class diagrams. Entities in 

this language are Package, Class, Association, Association Class, Composition, 

Inheritance and OCL constraints. These entities have the same semantics as in the UML 

specification. In UMT any number of UML packages can be attached. Typically, in a 

transformation one package is attached for the input domain, another for the output 

domain and a third for temporary vertices and links. In general, there are no restrictions 

on the number of domain that can be used. 

 

Figure 39 Concrete syntax of  the different expressions in GReAT 
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The abstract syntax of the transformations, expression and their interfaces has 

been shown in Figure 26 and Figure 27. The concrete realizations have been shown in 

Figure 39 and Table 3. The figure shows the concrete syntax for the primitive 

expressions: Rule and Case, compound expressions: Block, ForBlock, Test and the 

ExpressionRef. Table 3 shows the concrete syntax of the expression interfaces and 

pattern graphs. It also shows the attributes each entity has. 

Table 3 Concrete Syntax of the pattern graph and the rule interface 

Entity Kind Concrete Syntax Attributes 

In 
 

 

Out   

Pattern Class 

 

Action 

PatternCardinality 

Reference 

Guard 
 

ExpressionString 

Attribute Mapping 

 

ExpressionString 

Pattern 

Association 

Action 

PatternCardinality
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Pattern 

Composition 

Action 

Pattern 

Association with 

association class 

 

 

All these concrete syntactic elements come together to form the UMT language. 

Instances of the language can be seen in Figure 25, Figure 28, Figure 29, Figure 30, 

Figure 31, Figure 32 and Figure 33. 

The concrete syntax of for capturing the configuration information is available in 

Appendix E. 

Abstract Syntax 

Three abstract syntax formats have been developed to capture different types of 

information required for the execution of the transformation tools. These are (1) the 

Graph Rewriting (GR) format to store the transformation rules, (2) an xml based format 

to store UML metamodels and (3) GReATConfig, another XML based format to store the 

configuration information.  

The GR format has been described using UML class diagrams and has an XML 

schema defined for it. The UML class diagram of the GR format (Figure 40) shows the 

data structure representation. The abstract base class RuleBase is the basic element of the 
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transformation. It can be realized either as a RewritingRule or as a RuleProxy to a rule, 

where a rule proxy is a reference to another rule. The RewritingRule has an attribute 

called ruleType and this field can be one of the following {Rule, Case, Block, ForBlock, 

Test, ForTest}. This attribute was used to capture the different rule information in order 

to keep the language flexible such that new rules types could be easily added. The control 

flow information is captured using the sequence association between rules. 

PatternObject
<<Atom>>

RuleProxy

PassAlong
<<Connection>>

name : String

GRBase
<<FCO>>

name : String
action : String
cardinality : String
position : String[0..1]

Sequence
<<Connection>>

name : String
recursive : Boolean
condition : String[0..1]

RuleBase
<<FCO>>

name : String
position : String[0..1]

ObjectWrapperProxy
<<Atom>> OutputPort

<<Atom>>

ObjectLink
<<Connection>>

relationshipType : String
dstRoleName : String
srcRoleName : String
dstObjectID : Integer
srcObjectID : Integer

ObjectWrapper
<<Atom>>

classType : String
objectID : Integer
paradigmName : String
isAssociationClass : Boolean[0..1]

Code
<<Atom>>

code : String

InputPort
<<Atom>>

RewritingRule
<<Model>>

ruleType : String
guard : String
exhaustive : Boolean
forBlock : Boolean
cut : Boolean
ruleId : Integer

0..*

dst
0..*

src
0..*

0..*

srcObjectWrapper
0..*

dst
0..*

referedBy
*

refersTo
1

src
0..*

0..*

0..*

0..*

dstObjectWrapper
0..*

 

Figure 40 GR: the abstract syntax of GReAT 

Rules can contain GRBase the base class for pattern objects, pattern links and 

input/output ports. Primitive rules only contain pattern objects and links, while compound 
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rules only contain input and output ports. Each pattern object and link has a attribute 

called action which states the role the object plays in the pattern. The roles as we know 

can be either CreateNew, Bind or Delete. 

Rule proxies refer to other concrete rules. This is used to make a call to a 

previously defined rule. Rule proxies can only contain ObjectWrapperProxies. These are 

references to the interface of the original rule and are used to capture the data relations 

between the proxy and preceding, succeeding rules. 

The GR format depicting the abstract syntax helps to decouple the 

implementation of the language from its concrete syntax. There could be a different 

concrete syntax that can be used for the specification of transformations. Transformations 

specified in a particular concrete syntax can then be mapped to the GR format for 

execution. 

The GReAT Config format has also been defined using a UML class diagram and 

an automatically generated xsd. (see Appendix E) 

Execution Engine 

The realization of a language can be achieved using various methods. The first is 

by creating an interpreter, a program that will read, understand and execute language at 

runtime. The interpreter can be regarded as a virtual machine that can execute sentences 

of a language. The other approach is that of compilation where the sentences of the 

language are translated to assembly or machine code. The machine code can then be 

directly executed. In languages such as Java, the classical separation of interpreters and 

compilers do not hold true. In Java, a compiler is used to convert Java programs to a byte 
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code format and then an interpreter called the Java Virtual Machine is used to execute the 

byte code.  

GReAT uses a similar approach in the execution engine. The concrete syntax of 

GReAT is first compiled into the abstract syntax representation (the GR format). A 

virtual machine called the Graph Rewriting Engine (GRE) has been developed that can 

execute transformations represented in the GR format.  

The input and output of GRE are typed attributed graphs that conform to a domain 

specification. This adds another level of complexity where the data representation has to 

be discovered at runtime. Due to this reason handling of input and output graphs is also 

complicated. 

The primary modules of the GRE are: 

1. Metamodel independent data management layer. This part is 

required by the GRE to abstract out data access such that the traversal, 

modification and creation of graphs can be dealt in a uniform manner 

by the transformation engine. This layer uses the graph and its 

metamodel to identify and interact with the graphs. 

2. Transformation traversal layer. This part of GRE is responsible for 

reading and understanding the transformation specification. It is also 

known as the sequencer (see Figure 41). It starts from the start rule and 

is responsible for calling the rule executor with the correct inputs and 

passing the outputs of the executor to the next schedulable rule. 

3. Sequencer. This can be considered as the scheduler of GRE. It decides 

the order of execution of the rules based on the rule type and data 
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availability. It is also responsible for making the packets available for 

the rule and for passing the packets to the next rule after execution. 

4. Rule Executer. Once a rule has been selected to fire, it consumes each 

input packet one at a time to perform pattern matching and executing 

the effector. The pattern matching is the core of the transformation 

engine and has been implemented based on the algorithms described in 

the pattern specification language section of Chapter IV. 
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Figure 41 High-level block diagram of GRE 

Figure 41 shows the high-level block diagram with the essential features of GRE. 

The input and output graphs, along with their metamodel are accessed through UDM’s 

[88][89] generic API. UDM abstracts out the storage format for the input and output and 
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provides uniform, metamodel independent access to the models. The GR specific API is 

used to access the transformation specification since the GR format will seldom change. 

The internals of GRE consist of the sequencer and rule executor. The sequencer is 

implemented as a hierarchical stack machine. Within a parent rule the first step is to add 

all the ready-to-fire rules to the stack. The next rule to be fired is fetched from the stack. 

The differences in the rule types are maintained using different subroutines that add and 

remove elements from the stack in different ways. The execution semantics of these 

compound rules has been described in detail in Figure 30.  

Function Name: ExecuteBlock 
Inputs  : 1. List of Packets inputs   
   2. Expression block 
Outputs  :  1. List of Packets outputs 
outputs = ExecuteBlock(block, inputs)  
{ Stack of Rules ready_rules 
 foreach next_rule of block.next_rules() 
 { if(next_rule equals  block) 
  { outputs.Add(inputs )   
  } 
  else  
  { ready_rule.Push(next_rule,inputs) 

  } 
 } 
 while( ready_rules.NotEmpty()) 
 { current, arguments = ready_rules.Pop() 
  return_arguments = Execute(current, arguments) 
  For Each next_rule of current.next_rules() 
  { if(next_rule equals block) 
   { outputs.add(inputs) 
   } 
   else 
   { ready_rule.Push(next_rule,inputs) 
   } 
  } 
 } 
 return outputs 
} 

Figure 42 Block execution algorithm 

The execution of the Block (see Figure 42) consists of a a ready_rules that is 

initialized with the rules that are connected to the input interface of the the Block. The 

stack machine then runs till there are no more rules in the stack. The top of the stack is 
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popped and executed, then the rules that are connected to the output interface of the 

executed rule are placed onto the stack. When a rule is fired, all incomming packets are 

passed to it. The execution of the ForBlock is slightly different as descibed in Figure 31. 

In the ForBlock the entire rule chain is executed with one packet at a time. This is 

achieved (see Figure 43) by calling the Block execution for each input packet to the 

ForBlock and then gathering the output packets.  

Function Name: ExecuteForBlock 
Inputs  : 1. List of Packects inputs 
   2. Expression forblock  
Outputs  :  1. List of Packects outputs 
outputs = ExecuteForBlock(forblock, inputs)  
{ List of Packects outputs 
 foreach input in inputs 
 { returns = ExecuteBlock(forblock, input) 
  outputs.Add(returns)  
 } 
 return outputs 
} 

Figure 43 For block execution algorithm 

The Test is similar to a set of “if” statements without the “else” part. Since the 

default semantics are that an input packet will be tested with all the cases and more than 

one case may succeed, there is a requirement for an exclusive style of branching so that 

only one case succeeds.  A variant of this behavior is achieved using a special attribute of 

a Case called the “cut”. When Case has its “cut” behavior enabled, if the case succeeds 

on a given input, the input will not be tried with the subsequent cases. If each case in a 

test has the “Cut” enabled, then the test will behave like an if-elseif-else programming 

construct. To implement the “cut” an explicit ordering of the cases is required. The order 

of testing cases is derived from the physical placement of the case within the test, in the 

graphical model. The cases are evaluated from top to bottom. If there is a tie in the y co-
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ordinate then the x co-ordinate is used from left to right. Figure 44 shows the execution 

algorithm of the Test. 

Function Name: ExecuteTest 
Inputs  : 1. List of Packects inputs 
   2. Expression test 
Outputs  :  1. List of Packects outputs 
outputs = ExecuteTest(test, inputs)  
{ List of Packects outputs 
 List of Cases cases =                        
                  test.cases_in_sequence() 
 for each input in inputs {  
  for each case in cases {  
   returns = ExecuteCase(case, input) 
   outputs.Add(returns)   
   if(case has a cut and return exist) 
    break 
  } 
 } 
 return outputs 
} 

Figure 44 Test execution algorithm 

Once a primitive rule is selected for execution the rule executor takes control. 

There are primarily two functions of the rule executor. The first is the pattern matcher 

and the second is the effector. Figure 45 describes the algorithm executing a production 

(a “rule”). This algorithm calls the pattern matcher described in Appendix A and B. A 

“Packet” provides the initial binding required by the pattern matcher and the “Effector” 

function performs deletion and creation of objects. All the vertices/edges marked for 

deletion are deleted and vertices/edges marked for creation are created. After all the 

structural changes have been made, the attribute mapping specification of the rule is 

executed on the match to changes the attribute values. 

Function Name : ExecuteRule 
Inputs   : 1. Rule rule (rule to execute)  
      2. List of Packets inputs  
Outputs   :  1. List of Packets outputs 
outputs = ExecuteRule(rule, inputs)  
{ List of Packets matches  
 List of Packets outputs 
 for each input in inputs 
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 { matches = PatternMatcher(rule, input) 
  for each match in matches  
  { if match doesn’t satisfy guard  
    matches.Remove(match) 
  } 
  for each match in matches 
  { Effector(rule, match) 
   outputs.Add(match) 
  } 
 } 
 return outputs 
} 

Figure 45 Algorithm for rule execution 

Graph Rewriting Debugger (GRD) 

The success of a programming language often depends on the quality of the error 

messages a compiler provides and usefulness of the debugger to find and fix semantic 

errors. With this in mind a debugger for GReAT was developed. Graph Rewriting 

Debugger (GRD) consists of the following parts. 

1. An extension to GRE to allow the transformation to break and single step.  

2. A command line debugging interface that allows users to set break points, 

single step and retrieve stack information. 

3. A front end GUI that allows the same features in an interactive environment 

where the transformation, transformation call stack and input/output packets 

can be visualized. 

The GRD was not developed by me and has been mentioned here for the sake of 

completeness. 
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Code Generator 

For the sake of efficiency the transformations should have a compiler that 

converts the transformation specification into code. In the case of GReAT the compiler is 

composed of two stages, (1) the front-end that converts the concrete syntax to GR and (2) 

the back-end code generator that generates C++ code from the GR format. 

If we write the Graph Rewriting Engine (GRE) of GReAT as a function it will 

have the following signature: 

OTMMIGRE OI →××× )(: , where 

•  - metamodels. A Metamodel is a graph that defines the graph grammar 

of the input/output models. 

OI MM ,

• I – input model. A graph that conforms to the metamodel . IM

• O- output model. A graph that conforms to the metamodel . OM

• T - transformation. Is a graph rewrite/transformation specification [85]. 

The Code Generator performs a partial evaluation of the GRE function to produce 

code specific to a given transformation and input/output metamodels. 

( ) ( )OITTMMCG COI →→×× ::  

The justification for the partial evaluation is that the transformation and the 

metamodels make up the invariant part of transformation system. The same 

transformation is typically run on multiple inputs over a course of time. We argue that 

once the transformation and the modeling paradigm(s) reach a mature state, the 

transformation should be compiled into a high-performance executable that is capable of 

performing transformations in an efficient way. 
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By treating the metamodels as invariants, the CG can generate code that 

manipulate input and output models using paradigm-specific API’s. These API’s are 

generated by Universal Data Model (UDM), a framework that provides object-oriented 

C++ interfaces to programmatically access input/output models. UDM can generate a 

domain specific custom API with type-safe access methods for object creation/removal, 

link creation/removal, and attribute setters/getters [89]. The transformation executable 

can be built by compiling the generated transformation files and the paradigm-specific 

API files [85]. 

Comparison of CG with GRE 

In this section a comparison of the execution time of the GRE and the Code 

Generator is presented. Two transformation problems have been chosen for the 

comparison. These transformations are: 

1. Df Fdf: Transform Hierarchical dataflow to its equivalent Flat dataflow 

representation. 

2. Hsm Fsm: Transform Hierarchical Concurrent State Machine (HCSM) to its 

equivalent Finite State Machine (FSM). 
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(a) Normalized performance  (b) Code Generator speedup 

Figure 46 Performance graphs for Df Fdf 

To evaluate the performance of CG in comparison with GRE, the Df Fdf 

transformation was executed on 7 different input graphs. The size of these graphs varied 

from 24 vertices to 914 vertices. Execution times of GRE and CG were measured for all 

the inputs. Figure 46 (a) is a plot of the input graph size (n) vs. normalized execution time 

for both GRE and CG. Matlab’s polyfit function was used to find the closest fitting 

polynomial or exponential for the results and the second order polynomial yielded the 

best results. For this reason the n2 plot is also shown in Figure 46. From the graph one 

can see that the order complexity of the transformation doesn’t change significantly 

between GRE and CG and is governed by the complexity of the transformation 

algorithm. Experimentally it has been seen that the transformation algorithm’s 

complexity is approximately ( )2nO . Figure 46 (b) shows the graph of n vs. speedup 

achieved by the code generator. The dashed line in the graph represents the average 

speedup of 9.3x. From the graph it is observed that the speedup varies within a bound 

ranging from 4x to 18x. 
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(a) Normalized performance  (b) Code Generator speedup 

Figure 47 Performance graphs for Hsm Fsm 

For Hsm Fsm, 4 input graphs were used. These graphs only had parallel states 

and varied from 11 vertices to 27 vertices. Execution times of GRE and CG were 

measured for all the inputs. Figure 47(a) is a plot of the input graph size (n) vs. 

normalized execution time for both GRE and CG. The polyfit function was again used 

and this time an exponential to the base 10 yielded the closest results. For this reason 

Figure 47 also shows the 2n plot. From the graph we can see that the order complexity of 

the transformation doesn’t change between GRE and CG and is governed by the 

complexity of the transformation algorithm. Figure 47(b) shows the graph of n vs. 

speedup achieved by the code generator. The dashed line in the graph represents the 

average speedup of 83.3x. From the graph we can see that the speedup varies within a 

bound ranging from 14x to 119x. The 14x speedup was observed for very small models 

and could be because of a constant runtime overhead. A speedup of ~100x was observed 

consistently for larger models. 

From the experiments we see that the user is able to specify transformations with 

polynomial characteristics. This can be attributed to the language features provided in 
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GReAT. On the other hand exponential algorithms can also be specified as in the case of 

Hsm Fsm.  

The second conclusion is that the order complexity of the transformation remains 

the same for both GRE and CG. This is an expected result because the code generator 

does not perform any modifications that can provide a gain in order complexity. 

The speedup does not seem to have a definitive trend with respect to the input size 

but varies a lot from one kind of transformation to another. Df Fdf, an ( )2nO  

transformation yielded an average speedup of ~9x while the Hsm Fsm, an ( )nO 2  

transformation yielded an average speedup of ~85x. These results make us believe that 

the speedup is dependent on the complexity of the transformation. For higher complexity 

transformations the speedup appears higher. 

One possible reason for such a result can be based on the percentage of the total 

execution time spent in pattern matching as opposed to packet passing and other 

housekeeping work. Since a higher order complexity algorithm will spend more time in 

the pattern matcher, and the code generator partially evaluates the pattern matcher, a 

better speedup is observed. When the time complexity of the algorithm is small and the 

size of the models is large the packet-passing/housekeeping overhead is a large 

percentage of the total execution time and the speedup observed is less [85]. 

Integrated Development Environment 

The integrated development environment consists of an editor that is aware of the 

concrete syntax of the transformation language, integration of the interpreter, debugger 

and compiler within the same environment. 
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Figure 48 Block diagram of the GReAT IDE 

The GReAT IDE is centered on the concrete syntax called UML Model 

Transformer (UMT). A metamodel for UMT was created to configure GME as a UMT 

editor. Around this editor other features were added to convert the editor to become an 

IDE. The suite of tools developed around UMT can be classified into three categories. (1) 

Model development tools, (2) Model transformation tools and (3) Execution invocation 

tools. Model development tools are those that are used assist the process of model 

building. The model transformation tools are used to covert the concrete syntax into the 

intermediate representations. Execution invocation tools are basically a set of GUI based 
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access points to the GRE, GRD and CG. They help the user to run, debug and test the 

transformations within the same framework. 

Model Development Tools 

To facilitate the development of transformations using the concrete syntax the 

model editor should make the model development process as user friendly as possible. 

GME provides domain-specific editing interface where only syntactically correct models 

can be created. However, it would be better to prevent semantic errors or, at least, report 

them early. Static semantic errors can be reported with the help of OCL constraints that 

are evaluated during the model building process. Some errors can be caught and 

automatically corrected. 

Keeping this in mind a set of tools was developed for three primary reasons: 

1. Automatic update of metamodels: Metamodels are developed and 

modified in their own files and need to be kept in sync with the 

metamodels in the transformation. For this reason a metamodel update 

tool was created that would help copy the modified metamodel into the 

transformation and update all references from the old one to the new.  

2. Syntax highlighting: In the transformations pattern objects can have 

one of three possible actions, namely, Bind, CreateNew and Delete. 

Each action is associated a different color and different visual 

representation to clearly distinguish them. 

3. Automatic inference of pattern attributes: Some combinations of 

attributes are invalid and are automatically corrected. For example, if a 

pattern object is marked CreateNew, then its composition with the 
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parent can only have one action and that is CreateNew. Similarly, there 

are many cases where the values can be automatically filled. Another 

example is for the role names on the association. When a pattern 

association is created, based on the typed of the source and destination 

object the roles on both ends of the association can be identified from 

the metamodel.  

Execution Invocation Tools 

Apart from supporting the development of the transformations, the IDE should 

also support the execution in an effortless manner such that rapid evaluation of the 

transformations is supported. For this reason the three execution tools: GRE, GRD and 

CG have been integrated with the GReAT IDE. This has been achieved by providing a 

GUI front-end to these that that can be invoked from within the framework. 
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CHAPTER VI  

A CASE STUDY – SIMULINK/STATEFLOW TO HSIF 

In this Chapter the solution for a challenge problem is described to demonstrate 

the use of GReAT. The challenge problem chosen for this task is the semantic translation 

from Matlab Simulink/Stateflow (MSS) to Hybrid System Interchange format (HSIF) and 

it can posed as follows: Given the model of a dynamic system in MSS, compute an 

equivalent dynamic system model in HSIF which produces the same execution traces 

when executed, given the operational semantics of HSIF. For pragmatic reasons this 

constraint was relaxed. First, MSS includes procedural components which are impossible 

to express in HSIF. To overcome this, restrictions were imposed on MSS that only a 

subset of the MSS modeling language would be translated. Second, HSIF was defined 

using mathematical definitions in English, and not operationally (i.e. not via a simulation 

algorithm). Therefore, a mapping between constructs available in HSIF (e.g. discrete 

locations, differential equations, transition guards, etc.) and similar constructs in MSS 

had to be designed such that the two models described the same dynamic system. 

In the subsequent sections we describe the inputs and the outputs of the 

transformation, specify the translation strategy, describe how the transformation was 

specified in GReAT, give an illustrative example for the use of the translator, and 

describe the user experience in using GReAT. 
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The Inputs and Outputs of the Semantic Translator 

The output: HSIF 

HSIF is an interchange format that allows representation of hybrid systems using 

dynamic networks of hybrid automata. The detailed specification is available in [98]. The 

automata in HSIF follows the definition of hybrid automata (HA) [99] with a finite 

number of locations (or discrete states), where each location has a number of differential 

and algebraic equations associated with it. Differential equations capture continuous time 

dynamics in that location, while algebraic equations describe dependencies among 

variables. HSIF is capable of expressing networks of hybrid automata, where the 

automata can interact with each other using signals and shared variables. Signals are 

single writer-multiple reader variables that follow synchronous semantics, while shared 

variables can have multiple writers and multiple readers. 

The input: A subset of the MSS language 

Simulink has a rich set of model elements (Simulink blocks) covering various 

areas of signal processing. In Simulink continuous dynamics and discrete behavior can be 

mixed arbitrarily. On the other hand, HSIF has a clean separation between continuous 

and discrete behavior. Mapping arbitrary MSS models with complex interactions between 

continuous and dynamic behavior to HA is a difficult problem. The solution was to 

choose a subset of Simulink/Stateflow that maintains a clean separation between the 

continuous and discrete behavior. A subset of the primitive blocks from MSS was 

carefully chosen such that it provides a useful coverage. The supported Simulink blocks 

are as follows:  
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• Continuous time blocks: Integrator, State-space, Transfer Function, Zero-

Pole 

• Mathematical operators: Product, Sum, Gain, Min/Max, and any single-

input/single-output function (Abs, Trigonometric, etc.) No logical blocks are 

allowed in the current implementation. 

• Signal and Systems: Mux, Demux and ground. 

• Sources and Sinks: Matlab workspace constant, In, Out, To workspace and 

From Workspace. 

• Nonlinear elements: Controlled switch and Manual Switch. 

• Stateflow diagrams: Hierarchical and concurrent. 

The input models must comply with the following restrictions: (1) Stateflow 

diagrams can receive and provide continuous signals from and to Simulink. (2) Stateflow 

can also provide switching signals that are always connected to the control input of a 

Switch block. (3) Switches can be controlled only by these switching signals. These 

restrictions result in a clear separation of discrete and continuous behavior where all 

structural changes on the system are made through switches. Intuitively, each 

combination of these switches corresponds to a discrete location of the HA. 

Example: Tank Level Control 

To illustrate the steps a translation algorithm has to take, an example is provided 

in this section. As shown in Figure 49, there is a tank containing fluid, with an inlet pipe 

and two outlet pipes. Each pipe has a valve, named V1, V2 and V3 that can be in either 

open or closed state. A valve is modeled as a switch in MSS. Sensors can sense the height 
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of fluid in the tank (h) and the flow through valve V3 (em flow). A controller regulates 

the system using the state machine shown in the Figure 49. In the initial state of the 

system V1 is closed and V2 is open. When the height of the tank goes above 10 units 

then outlet values V1 and V3 are opened. When the flow through V3 becomes greater 

than 5 units, the inlet value V2 is closed. The inlet V2 is opened and outlet V1 is closed 

when the fluid level drops below 8 units. 

 

Figure 49 A tank with three valves 

Looking at the models, the number of locations in the final hybrid automata is not 

apparent. On closer inspection it is seen that the in the initial state Low, valve V1 is 

closed and V2 is open. However, the value of value V3 is unspecified, thus the initial 

state has discrete behavior, represented by the opening or closing of V3. Thus, state Low 
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needs to be split into two states such that one of the states is active when V3 is open, 

while the other one is active when the V3 is closed, connected via a state transition. 

Having inspected the entire system and the controller’s state machine, the resulting state 

machine diagram can be drawn up as shown in Figure 50. 

 

Figure 50 The ”true” (hybrid automata) state machine for the tank example 

After all the discrete states are identified, the next step is to find the differential 

equations for each state. Since the value of the switches are all defined for a given state, 

the Simulink diagram is now purely continuous and variable substitution can be used to 

find the differential equations. Differential equations are calculated from the output of the 

integrator block (see block with 1/S in Figure 50). For example, for location High111 in 

Figure 50, the differential equation for the tank (block 1/S in Figure 50) block can be 

found as follows. Let the output of each block have the same name as the block. Then, 

d/dt(tank) = Sum, where Sum is the output of the summation block that can be substituted 

with the sum of its inputs: d/dt(tank) = (−Switch1 + Switch2 − Switch3) Since the 

settings of the switches for this location are known, those paths will be chosen. A switch 
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having the value of ‘1’ indicates that the topmost input of the switch is passed through. 

Thus, Switch1 will be replaced by the tank variable. Switch2 is replaced by 36*1 and 

Switch3 is replaced by the output of the MATLAB function which is 3*max(0,tank-15). 

Finally the differential equation of the tank level is:  

)15,0max(*336)( −−+−= tanktanktank
dt
d  

Implementing the Algorithm in GReAT 

This translation algorithm has been implemented using GReAT. It contains 131 

rules, 40 compound rules and 22 test/cases. The implementation is divided into two parts, 

the first deals with finding all the discrete locations in the Simulink/Stateflow diagram 

and the second deals with inferring the continuous dynamics for each location. 

Translating Stateflow 

In the Stateflow part of the algorithm (see Figure 51), first the Stateflow models 

are converted into an internal representation in CreateHierarchicalStateChart. Next, the 

hierarchical concurrent state machine is converted to its equivalent, “flat” finite state 

machine in HSM2FSM. Then in CreateVarAs, associations of Simulink switches with the 

states are transferred to the flat machine. At this stage StateSplitting, the splitting 

algorithm is performed (see Appendix F). After all the required discrete states/locations 

have been found, Reachability is executed that performs reachability analysis on the 

models to eliminate all unreachable states. At this state the number of discrete states in 

the system is known and corresponding locations in HSIF are created. 
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Figure 51 The StateflowPart Rule 

HSM2FSM is the part of the transformation that converts a hierarchical concurrent 

state machine to an equivalent flat representation. The flattening algorithm is depth-

first/bottom-up and is achieved using a recursive block Top-level (shown in Figure 52). 

HSM2FSM gets input from the input port InState. The input can be of type or-state, and-

state or simple-state. The first expression inside top-level is a test/case called Test that 

branches according to the type of input. If the input is an and-state it is passed to the 

block called And that flattens the and-state. If the input is an or-state, it is passed to the 

block called Or that deals with the flattening the or-state, and if the input is a simple-state 

it is passed directly to the output port OutState without any processing. 

 

Figure 52 The HSM2FSM rule 
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Figure 53 shown the rules inside the Or block of Figure 52. These internal rules 

are used to flatten an or-state. The first rule in the rule chain is CallRecursiveOnChildren, 

a block that finds all the contained states of the or-state being processed and then called 

the HSM2FSM rule (Figure 52) for each of them. The next expression TestForChild will 

only execute after the recursive calls have been executed and thus at this point the or-

state being flattened will only contain flat or-states (and-state when flattened will also 

produce an equivalent flat or-state) and primitive states. TestForChild is a test/case and it 

tests to see if the or-state contains any or-state type children. If not, then the or-state is 

already flat and is passed to the output port. If the or-state contains other or-states then it 

is passed to ElevateChildOr rule (Figure 54).  

 

Figure 53 Inside the OR rule 

Figure 54 shows ElevateChildOr rule. In the rule, the or-state being flattened is 

Or1 and for each contained Or1x child or-state having a child State, a new StateNew is 

created as the child of Or1. The next rule in sequence is CreateInitTransition. This rule is 

used to create equivalent transitions for the init transition within Or1. ElevateTrans is the 
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next rule and it creates transitions for each transition contained in Or1x. CreateOrTrans 

The next rule is used to create equivalent transitions for each transition that is incident 

upon Or1x. The last rule in the sequence DeleteChildOrs is used to delete Or1x. At this 

stage the Or1 state is a flat or state.  

Flattening an and-state is more complex and requires a few more rules. For the 

sake of brevity it has not been described here. 

 

Figure 54 ElevateChildOr rule 

StateSplitting (see Figure 55) is one of the most complex parts of the mapping and 

it is done in stages. The first stage is Infer Implicit Signals and it implements Step 2 of 

the algorithm described in Appendix F. This is followed by NewMachine which creates 

an empty state machine. The Create State Tribes performs state splitting based on Step 1. 

The next step is Transfer Transitions which implements Step 3 by appropriately mapped 

transitions to the new machine. If the initial state was split, an initial state is selected 

according to Step 5 in CreateInit. CarryBlockRef and In2Out perform housekeeping 

operations at the end.  

The Infer Implicit Signals block in Figure 55 is performed repeatedly. In every 

iteration step, for every state the SetImplicitValue rule (see Figure 56) is called. In the 
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SetImplicitValue block all switching signals with color red are chosen. If there is an 

incoming transition which alters the state of the signal, then the transition is used to infer 

the new state of the signal. The translator will iterate until none of the signals change 

during a run, i.e. the iteration reaches a fixpoint. 

 

Figure 55 The StateSplitting rule 

There are two main cases that can change the default interpretation of switching 

signal values. The first case is shown in Figure 56. For a given State and switch variable 

(called Data in the diagram), if there exists another state (OtherState) with a transition to 

State, OtherState may influence the value of Data. Each state has a relation with Data, 

and the relation has two attributes: color and value. Color can be either black or red, 

black implying that the state is set to the value, while red implying that the value was 

inferred. Value can be 0, 1, ?, X, where ‘?’ specifies that the state does not influence data, 

while ‘X’ specifies that the state can set the data to either ‘0’ and ‘1’.  
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Figure 56 The SetImplicitValues Rule  

In Case? if State’s relation with Data is ‘red’ and value is not ‘X’ and 

OtherState’s relation with the Data is ‘?’ then, the inference is that the value of the 

current state’s relation with data is also ‘?’. In CaseDifferent if OtherState’s relation with 

Data is not ‘?’ and is not the same as State’s relation with Data. In this case the State’s 

relation with Data is altered according to the following rules. If State’s relation was ‘?’ 

then it will take OtherState’s relation. If State’s relation is not the same as OtherState’s 

then it will take the value of ‘X’. 

Implementation of the reachability analysis (see Figure 51) is based on the mark 

and sweep algorithm [102]. The algorithm starts with the init state and marks all the 

states it can find. Once all reachable states have been marked the second part traverses 

through the states and deletes all the states that have not been marked. 
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Translating Simulink 

After all the states of the hybrid automata have been created, the next step is to 

identify the algebraic and differential equations for each location (Step 4 of Appendix F). 

The various steps in this translation are (1) identification of state variables, (2) 

identification of input and output variables (3) discovery of algebraic equations for 

dependent variables and (4) discovery of the differential equations for the state variables. 

Each integrator block in Simulink is assigned a state variable. Each input  port to 

the entire system becomes an input variable. Each source block of Simulink also becomes 

an input variable. Sink blocks and output ports become output variables. Some 

intermediate variables are created for interfacing with Stateflow. These variables depend 

on other independent variables in the system. 

After all the variables have been identified, the next step is to determine algebraic 

equations of dependent variables and differential equations for state variables. These 

equations are location dependent, thus for each location the differential and algebraic 

equations are inferred using a backward trace algorithm. Starting from the Simulink port 

corresponding to the variable a backward trace is used to determine the blocks that 

provide input to the block. For each such block the block’s type determines the kind of 

sub-expression the block will add to the equation (see Table 1). The back trace yields a 

tree with the termination points being state variables, input variables and constants. 
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Table 4 Mapping Simulink blocks to sub expressions 

 

Translating the Tank Level Control example 

This section shows how the algorithm described earlier can be used to translate 

the Simulink/Stateflow example described in Figure 49. Initially, in state Low, the value 

of V3 is undefined while the value of V2 is undefined in state High. In state Too High the 

value of V1 and V3 is undefined. After running the Infer Implicit Signals block there are 

some implicit values for undefined variables (see Figure 57(b)). For example, in state 

Low, the value of V3 can be both 0 and 1, while in state High the value of V2 was set to 

1. After we determine the value of the switches in each state we can split the states that 

have switches with undefined values. In this example, the state Low will be split into two 

while the state Too High will be split into four new states (see Figure 57(c)). 
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Figure 57 Stages of Stateflow splitting 

After the states are split, transitions from the original machine need to be 

transferred to the new larger machine. The algorithm takes care of mapping the 

transitions correctly. After the equivalent machine is created, reachability analysis is 

performed. The analysis will reveal that state Too High with value of V1 = 1, V2 = 0 and 

V3 = 0 will never occur and it can thus be eliminated. Figure 57 (d) shows the locations 

in HSIF. The visualization is provided by HyVisual [100]. After all the discrete locations 

have been identified, the continuous time dynamics for each location will be found using 

the backward trace algorithm. 

Summary 

This Chapter described the implementation of an algorithm to convert MSS 

models into HSIF models. The MSS models may contain continuous time blocks, 
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Stateflow blocks, and switches, while the resulting HSIF model consists of a hybrid 

automaton that exhibits the same dynamic behavior as the original MSS model. This 

transformation demonstrates the capabilities of GReAT as a transformation language and 

shows how it can be used to solve complex real world problems.  

One notable aspect of this implementation is that external support was not 

required for the implementation of the algorithm. Also all the different algorithms and 

graph manipulations required by the algorithms such as: state splitting, state space cross 

product, back trace of the Simulink graph, were achievable and easy to implement in 

GReAT. 

During the development of the solution, the strengths and weaknesses of GReAT 

were identified. The strengths are: 

1. Specification of structural manipulations was very easy and intuitive 

with GReAT. 

2. There were fewer errors in the specification and debugging and finding 

the error was easier because of a visual representation.  

3. Understanding the implementation after a long break (2 weeks to a 

month) was easier than it is in a regular programming language such as 

C++ 

4. Having a hierarchical representation helped significantly in managing 

the complexity of such large and complex transformation. 

 

Some of the weaknesses of GReAT were: 
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1. There is no elegant way to parse string attributes and complex code 

needs to be written in the attribute mapping area.  

2. Creation of a number of objects cannot be visually specified based on 

the information provided in attributes. Users need to write attribute 

mapping code to achieve this. 

3. Since the transformation language is similar to functional programming, 

the entire required context need to be carried along and passed to all the 

intermediate rules. 

Conclusion 

The conclusion that can be drawn from this Chapter is: GReAT language is 

suitable for model-to-model transformations and it can be used to specify and 

automatically implement large complex models. It allows the user to write the 

transformation without worrying about implementation details such as accessing and 

manipulation models, executions of the pattern matcher and other similar issues. GRE 

and GRD provide an easy way to prototype and debug the transformations while the CG 

provides an efficient implementation once the transformation algorithm is fixed. The 

intuitive feeling is that efficiency of the developer is enhanced with the help of GReAT 

and the associated tools. 
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CHAPTER VII  

RESULTS, CONCLUSIONS AND FUTURE WORK 

Results 

This section will evaluate GReAT and its tool suite with respect to the 

requirements defined in Chapter III. The evaluation should lead to the validation or the 

negation of the hypothesis. First, the requirements are revisited to see whether they were 

satisfied by GReAT. 

Requirement 1 

“The transformation language should have a sub-language for the specification of graph 

domains.” 

GReAT uses UML class diagrams as the sub-language for the specification of 

graph domains. 

Requirement 2 

“The domain specification language should use a well know language or be based on 

one.” 

UML class diagrams is a well known language which has been standardized [3] 

Requirement 3 

“The transformation should use the type information from the domains to strongly type 

the transformations.” 
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The pattern specification of GReAT uses the type information from class 

diagrams to make pattern specification and transformation strongly typed. 

Requirement 4 

“Often rewriting graphs belonging to one domain into graphs that belong to another 

domain is required. 

a. The language should support the specification of multiple domains. 

b. It should have constructs that allow users to write rewritings where the 

input and output graphs are disjoint and do not even belong to the same 

domain.” 

In GReAT, any number of UML packages can be used. Each package contains a 

set of class diagrams that represent a domain. The user can specify new packages that are 

temporary and used only during the transformation. These packages can associate objects 

belonging to different packages. These temporary packages help integrate the 

independent packages only for the transformation. Thus, a graph rewriting problem can 

be treated as a transformation where the input graph is concentrated in one part of the 

domain while the output graph will be concentrated in a different part. 

Requirement 5 

“The computational power of the transformation language should be comparable to a 

Turing machine to ensure that any transformation conceivable can be handled by it.” 

As mentioned in Chapter III, a Turing Machine (TM) is a represented as a 5-tuple 

T = (Q, Σ, Γ, q0, δ), where 

Q = {q0, q1,…, qm}  is a finite set of states 
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Σ =  {s1, s2, …, sn}  is a finite set of symbols called the input alphabet 

Γ is a super set of Σ  is a finite set of symbols called tape symbols 

q0 is an element of Q  is the initial state 

},,{}){(}){(}){(: SLRhQQ ×∆Γ×→ΑΓ× UUUδ   is a transition function 

Here  denotes a blank and R, L and S denote move the head right, left and do 

not move it, respectively and h denotes the halt state. The tape symbol on the right side of 

the transition function is written to the current cell. 

∆

To prove that GReAT is Turing complete it needs to be established that any 

Turing machine can be converted to a GReAT program. The TM can be emulated in 

GReAT using a Domain for representing TMs.  

TapeCell

Value : String

TuringMachine CurrentState

Value : String
CurrentHeadPosition

0..*

right
0..*

lef t 0..*

1

pointsAt
1

11

 

Figure 58 The domain of Turing machines 

Figure 58 shows a domain that can store the necessary information required for 

implementing a TM. In the figure we see that a TuringMachine can contain an infinite 

number of TapeCells. These cells are organized such that each cell has a left cell and a 

right cell with the constraint that disallows a circular tape. The TuringMachine also 

contains one instance of the CurrentState object that stores the current state of the 
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machine. The CurrentHeadPosition object has an association to a TapeCell which 

describes the head position. 

TM
In Out

Initialize

In Out
H

RunMachine
Out

 

Figure 59 The top-level rule of Turing machine 

The transition function can be represented as a GReAT transformation. At the top 

level (see Figure 59) the input Turing Machine is initialized with the CurrentState.Value 

field equal to the initial state. Then the machine is run till it reaches the halt state. 

H

In

Q1
Q2
Qn

H

CurrentState?

OutIn

In Out

Q1

In Out

Q2

In Out

Qn

 

Figure 60 Internals of RunMachine 
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Figure 60 shows the RunMachine Block. First, a Test is used to determine the 

current state. Based on the current state, the block corresponding to it is used. In the 

block, action is taken and the current state is changed. Then the TM is passed out from 

the out port which is fed back to RunMachine (see Figure 59). If the current state is the 

halt state then the output goes to H output port which then terminates the program. 

In

In Out

ActionForQ1S1

In
S1
S2
Sn

TestTapeSymbol

In Out

ActionForQ1S2

In Out

ActionForQ1Sn

Out

 

Figure 61 Inside Q1 block, choosing action for current state and symbol 

Inside the block for a particular state there is a test for checking the current 

symbol. Based on the current symbol, a rule is taken where the action for the state will be 

taken. For example, in the block Q1 (see Figure 61) the test chooses between different 

actions. Within an action (see Figure 62) the value of the current tape cell can be 

changed, a new state specified and the new position of the tape head can be changed to 

either the left or the right.  

147 



CurrentHeadPosition

Out

In

CurrentState

Value : String
TuringMachine

TapeCell

Value : String

NewTapeCell

Value : String

TapeCell.Value = <new value>

CurrentState,Value = <new state>

pintsAt

right left

pointsAt

 

Figure 62 Action taken for a particular State, symbol pair. 

Requirement 6 

“The language should be capable of transforming/rewriting any number of 

graph/domain pair, not just two. There could be n input graphs and m output graphs and 

these graphs can belong to any number of domains.” 

In GReAT any number of domains can be used and the transformation can work 

with an arbitrary number of input and output graphs. For example, the 

Simulink/Stateflow to HSIF translation works on three graphs belonging to different 

domains. The input graph is the Simulink/Stateflow graph. The Stateflow part is 

converted to an intermediate state machine representation called StateChart. Finally the 

output produced is a graph that belongs to the HSIF domain. 
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Requirement 7 

“The language focus should be on constructs that allow users to write efficient 

transformations.” 

Special attention was paid to the performance of the language constructs. As 

described in Chapter IV Section on optimized transformations, three language constructs 

have been described followed by details on how they can be used for building efficient 

transformations. The three techniques are (1) Typed Patterns, (2) Pivoted Patterns and (3) 

Reusing previously found objects. 

Requirement 8 

“The language should have efficient implementations of its programming constructs. 

The implementation should be comparable to its equivalent hand written code.” 

Efficient algorithms and partial evaluation of different parts were used and the 

two primary methods for building efficient implementations of the language constructs. 

Appendix A, Appendix B and Appendix C are algorithms for efficient pattern matching 

using the notion of pivoted patterns. The CG, as described in Chapter V performs a 

partial evaluation of the generic pattern matching algorithms making the time constant 

much smaller. 

Requirement 9 

“The language should have a formal mathematical foundation that can facilitate the 

verification of transformations by theorem proving.” 

Semantics of GReAT were defined in Object Z, a formal mathematical language 

used for expressing semantics (see Appendix D). This gives GReAT a strong 
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mathematical base. Given a transformation in GReAT, it can be converted into a set of 

operations and functions on the input and output domains. Proofs can then be written 

based on these transformations. Since the granularity of the transformations is much 

coarser than statements of a programming language, larger proofs should be possible. 

As a demonstration of this capability a simple transformation problem is used. 

The transformation is required to produce an isomorphic copy of given graph. For the 

sake of simplicity, a single domain is used. The domain has one type of vertex SV and 

one type of edge SE. A temporary domain with one cross-link TempE from SV to SV is 

used. As shown in Figure 63 the transformation consists of three rules. The first rule 

CopyVertices creates a new vertex for every vertex in the graph and creates a TempE 

edge between them. The second rule CopyEdges creates the edges corresponding to the 

original graph, and the third rule, DeleteOld deletes the old graph.  

SimpleGraph
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equivSV

Out

src dstTempEequivSVSV

SimpleGraph

OutIn

src
0..*

dstTempE

ScrEquivSVScrSV

dstSV

SimpleGraph
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OutIn
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dst

SE

src dstTempE

src

dst

SE

src dstTempE

Copy Vertices Copy Edges Delete Old

Inter Inter

 

Figure 63 Transformation to make isomorphic copy of graph 

In order to prove that the transformation actually performs an isomorphism, a 

formal proof is required. First we need to define graphs, their domains and the written the 

properties of the transformations. 
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Def 1: We call a set G a graph if 
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Def 2: We call a graph I an intermediate graph if 
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Def 3: We define  as the class of all intermediate graphs  Ι

 
Def 4: We call an intermediate graph S a simple graph if 
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Def 5: We define  as the class of all simple graphs  Σ
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Def 6: We define the operation Ι→Σes:CopyVertic  where 

( )( )( )
( )
( )( )
( )( )
( )( )FVvevEEe

FVvevVVv
FVvevVv

FVvevveDstveSrcTempEeEType
VVvEEeVv

VVEEVFV
ETypeETypeVTypeVTypeDstDstSrcSrc

EEVV
,EType,VType,Dst,Src,T,T,EVI

,EType,VType,Dst,Src,T,T,EVS
I)es(SCopyVertic

outtininoutt

outtininoutout

outtininin

outtinouttintt

inoutoutinouttinin

inoutinoutin

inoutinoutinoutinout

inoutinout

outoutoutoutEVoutoutout

ininininEVininin

outin

∈∃−∈∀
∈∃−∈∀

∈∃∈∀
∈↔=∧=∧=

−∈∀−∈∀∈∀
−×−×⊆∃

⊇∧⊇∧⊇∧⊇
⊇∧⊇

=

=

=

),,(! )10(
),,(! )9(

),,(! )8(
),,()()()(     

 )7(
)()( )6(

 )5(
 (4)
 (3)

 (2)
graphs simple allfor   )1(

( )

 

 
Def 7: We define the operation Ι→Ι CopyEdges:  
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Def 8: We define the operation Σ→Ι DeleteOld: as 
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Def 9: We define the operation Σ→Σ Copy:Isomorphic  as 
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Lemma 1:   iniout VVV −= 1

Proof: 

1. For all v element of Vout, v is an element of Vi2 since Vi2 is a superset of Vout and v 

is an element of Vi1 since Vi1 is equal to Vi2 and 

2. For all v element of Vout v is not an element of Vin since for all vin elements of Vin 

there exists a temporary edge such that vin is the source of the edge (Def 6: (8)) 

and by Def 8: (4) vertices that are the source of a temporary edge cannot be an 

element of Vout. 
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3. For all v element of Vi1 – Vin, v is not the source of a temporary edge (Def 6: (7)) 

and thus is an element of Vout (Def 8: (4)). 

Def 10: We define a relation s outin VVIFV →:  a

( ) ( )( FVvevIFVvv outtinoutin )∈∃↔∈ ),,(e ),( t  

We claim that IFV is a bijection. First recall that by Lemma 1, Vout= Vi1-Vin. By 

Def 6: (8), for each inin Vv ∈  there is a unique outiniout VVVv =−∈ 1  with 

. By Def 6: (9), for each ( IFVvv outin ∈),( ) outiniout VVVv =−∈ 1  there exists a unique 

 with ( . Thus, IFV is a 1-1 correspondence, i.e., a bijection. inin Vv ∈ )

}

IFVvv outin ∈),(

 

Lemma 2:  )(|{ 11 TempEeETypeEeEE iiin =∈−=  

Proof: 

1. For all e element of Ein, e is an element of Ei1 since Ei1 is a superset of Ein.  

2. For all e element of Ein e is not an element of })(|{ 1 TempEeETypeEe i =∈  since 

Ein is a simple graph and simple graphs cannot have temporary edges. 

3. For all e element of })(|{ 11 TempEeETypeEeE ii =∈− , e is a SE and thus in Ein 

(Def 6: (7) and (10)). 

 

Lemma 3:   12 iiout EEE −=

Proof: 

1. For all e element of Eout, e is an element of Ei2 since Ei2 is a superset of Eout.  
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2. For all e element of Eout, e is not an element of Ei1 since for all ei1 of Ei1 either the 

Src or Dst or both is the Src of temporary edges (Def 6: (7) and (8)) and vertices 

that are the Src of a temporary edge are not part of Vout. 

3. For all e element of Ei2 – Ei1, e is a SE (Def 7: (7)). Src and Dst of e are Dst of 

temporary vertices (Def 7: (7)). Thus, e is neither the Src nor the Dst of a 

temporary edge (Def 6: (7)) and thus is an element of Eout (Def 8: (5)).   

 
Def 11: We define a function s outin EEIFE →:  a

( ) ( )( )FEeeeeeeIFEee outtdtsintdtsoutin ∈∃↔∈ ),,,(,),(  

 

We claim that IFE is a bijection. First recall that by Lemma 3, 12 iiout EEE −= , 

and by Lemma 2, })(|{1 TempEeETypeeEE iin =−= . By Def 7: (7), for each  

iniin ETempEeETypeeEe ==−∈ })(|{1  there is a unique outiiout EEEe =−∈ 12  with 

. By Def 7: (7), (8) and (9), for each ( IFEee outin ∈),( ) outiiout EEEe =−∈ 12  there is a 

unique iniin ETempEeETypeeEe ==−∈ })(|{1  with ( )IFEee outin ∈),( . Thus IFE is a 1-1 

correspondence, i.e., a bijection. 

We claim that IFV and IFE are edge preserving. By Def 6: (7), for all vertices v in 

Vin there exists a temporary edge with v as the source. By Def 7: (8), for all simple edges 

iniin ETempEeETypeeEe ==−∈ })(|{1  there exists a unique simple edge with the 

source and destination vertices being the destination of temporary edges of the 

corresponding source and destination vertices.  implies that outin eeIFE =)(
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)())(( outin eSrceSrcIFV =  and )())(( outin eDsteDstIFV = . Thus IFE and IFV are edge 

preserving. 

Thus, for all   and are isomorphic. ,Σ∈inG G )(GCopyIsomorphic

This example transformation and the accompanying proof show that GReAT can 

be used for specifying transformations and have a formal verification of the properties of 

interest. For larger and more complex transformations the definitions can get more 

complicated. The positive side of the transformation language is that it is conceivable to 

write a translator that can convert the transformation specification into mathematical 

definitions. The theorem proving can then be done either by hand or using different 

heuristics. 

Revisiting the Research Hypothesis and Completion Criteria 

“A Metamodel based transformation language using graph rewriting and 

transformations that support multiple graphs (that may belong to different domains) with 

an efficient implementation is suitable for the specification of model transformers. Such a 

language should help shorten the time taken to develop model transformers and allow for 

formal proof of correctness of the transformations.” 

GReAT is a graph transformation based model-to-model transformation language 

that supports multiple input and output graphs. In the Simulink/Stateflow transformation 

the need for transformation that uses more than two domains was seen. Thus, the 

requirement for multiple domains has been justified. The research hypothesis claimed 

that a graph transformation based language with efficient implementation would help 

speedup the time taken to develop model transformations and would allow formal 
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theorem proving. The theorem proving aspect has been demonstrated with the help of an 

example. 

The two completion criteria were (1) expressiveness and (2) usefulness of the 

language. Expressiveness is measured in two dimensions. The first metric is the class of 

problem the language can solve. For instance, if the language is Turing complete then it 

can compute solutions to all problems that a Turing machine can solve. The second 

metric is whether it can by used to solve real-world problems. It was found that GReAT 

satisfies both these requirements. It has been proven to be Turing complete and thus as 

powerful as any other programming language. More importantly, both challenge 

problems and a host of other real-world problems were solved using GReAT, 

demonstrating that it is actually practically usable.  

The second completion criterion was the usefulness of the language. This is the 

measure of the effectiveness of expressing the class of problems it targeted. This should 

also give us some insight into the question of whether such a language would provide a 

speedup over other conventional approaches. From user experience (discussed in the 

summary section of Chapter VI) it was seen that GReAT offers some advantages over 

other approaches such as (1) It was easy of specifying structural manipulation, (2) Errors 

were caught early and were fewer, (3) Manageability of the complexity simpler with 

hierarchical decomposition and (4) Maintaining and enhancing the transformations was 

more convenient because understanding previous work was more intuitive. These 

observations help us believe that the language would provide a speedup. However, a lot 

of empirical data over many projects and people is required to establish such a claim. 

Some preliminary work has been done in this field to gather such data. 
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Table 5 shows a compilation of the transformation specified in GReAT, the 

complexity of the transformation in GReAT, the time taken and the lines of code it was 

or would have been in a traditional language. The table provides some insights into how 

the transformations relate to hand code. If we use some code time metrics to speculate the 

time it would have taken to write the code, we can get an approximate idea of the 

speedup achieved. 

Table 5 Compilation of different projects developed in GReAT 

GReAT Hand 
code 

Problems Primitive/ 
Compound 
Rules 

Time 
(man-
hours) 

Est. 
LOC 

Mark and sweep 
algorithm on Finite State 
Machine (FSM) 

7/2 ~2 ~100 

Hierarchical Data Flow 
(HDF) to Flat Data Flow 
(FDF) 

11/3 ~3 ~200 

Hierarchical Concurrent 
State Machine (HCSM) 
to Finite State Machine 
(FSM) 

21/5 ~8 ~500 

Simulink Stateflow to C 
code 70/50 ~25 ~2500 

Matlab Simulink/ 
Stateflow to Hybrid 
System 

154/43 ~50 ~5000 

 

Another technique for establishing the merits of GReAT is to show the first class 

entities of the language and show how and why they may help provide a speedup. The list 

of new entities that have been made first class objects in GReAT are 

1. A powerful pattern specification language which has elevated the 

specification of patterns to be matched as a first class entity. The built-
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in pattern matching algorithms allow the users to simple specify the 

pattern and not have to worry about how to match it. 

2. Graph transformation language that allows users to specify 

manipulation of the graphs in an intuitive manner. 

3. Heterogeneous metamodel that allows users to specify all the temporary 

data structures in the same formalism as the source and target. It 

elevates temporary information to first class entities. 

4. Controlled transformations provide the user with the facility to 

sequence the transformations, use test cases and other programming 

constructs. The language fuses both declarative and imperative 

constructs in a manner that is intuitive for users and helps them be more 

efficient. 

The above mentioned list of features describes the various language components 

that help make the language suitable and useful for specifying model-to-model 

transformations. 

Conclusion 

Computing languages continue to evolve toward higher levels of abstraction. The 

journey has taken programming languages from machine code to state of the art 

languages for component-oriented systems. A survey of modelling languages and looking 

into future trends in software engineering revealed a trend towards domain-specific 

modelling languages that may have both textual and graphical notation. Earlier attempts 

at CASE tools and domain-specific languages were studied to identify the reasons for 

limited success. The conclusion was that developing custom domain-specific languages 
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suffered from the problems of (1) high cost, (2) lack of standardization and (3) 

robustness. 

It was argued that these problems can be avoided by the using a framework 

approach to developing domain-specific languages. A set of requirements for such a 

framework were identified. The areas of Model Integrated Computing (MIC) and 

Generative Programming (GP) were studied where an attempt to make such a framework 

has already been made. The conclusion of the search was that MIC-based frameworks 

were more suitable for the specification of domain-specific languages. Thus different 

MIC based tools were evaluated to see whether they fit the requirements. All tools that 

were surveyed lacked a formal language for specifying the dynamic semantics of the 

domain-specific languages. This step was usually achieved by writing a model interpreter 

or compiler that implemented the semantics of translating the models to a known 

semantic framework. 

This deficiency of MIC frameworks was identified as the key limitation and 

various approaches to solve the problem were studied. Since models can be represented 

as graphs, the field of graph grammar and transformation was studied. Graph 

transformations seem to be ideal for a model transformation language. Nevertheless, 

these approaches could not be used directly for model-to-model transformations, and this 

posed some interesting challenges. These challenges were as follows: (1) multiple graph 

domains may be involved in the transformation, (2) there is a need for specification and 

use of links that cross domains, and (3) support for sequencing the transformation rules 

are required. Due to these requirements previous approaches could not be directly used. 
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Based on the literature survey, a research hypothesis was made that argued that a 

graph transformation based language would be suitable for model-to-model 

transformations. The requirements for such a language were laid out and the completion 

criteria were defined. 

Graph Rewriting and Transformations (GReAT): a graphical language that 

addressed these requirements was introduced.  GReAT is based on the use of UML class 

diagrams (and OCL) for representing the domains of the transformations (and structural 

integrity constraints over those domains). Transformations over multiple domains were 

supported, and cross-links among domains were defined at the metamodeling level.  

The transformation language itself was divided into three sub languages: (1) 

Pattern Specification language, (2) Graph Rewriting/Transformation language and (3) the 

language for Controlled Graph Rewriting and Transformation. The Pattern Specification 

language introduced a concise way to represent fairly complex graphs, and various 

pattern matching algorithms were also developed. The Graph Rewriting/Transformation 

language was used to define graph transformation steps. Pattern graphs were embellished 

with actions like new, bind, and delete to express actions within a transformation. Pre-

conditions for the transformations were captured in the form of a guard, and attribute 

mappings were used to modify the values of attributes. The language for Controlled 

Graph Rewriting and Transformation defined high-level, hierarchical control structures 

for rule sequencing, modularization, and branching. 

In order to realize GReAT as a usable language, a concrete syntax was given to it. 

The concrete syntax defined the concrete entities and their visualizations. An abstract 

syntax for GReAT was also designed with an XML representation, thus isolating the 
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tools from the concrete syntax. An execution engine called Graph Rewriting Engine 

(GRE) was developed for GReAT. The GRE could read a GReAT specification and 

execute it on a given input to produce output. A debugger called Graph Rewriting 

Debugger (GRD) was also developed on top of the engine to allow users to single step 

through the GReAT transformations. The debugger also provided visualization front-end 

to drive the debugger and visualize the objects at different times. The GRE and GRD are 

good for prototyping the verifying the correctness of the transformation but the execution 

speeds is not acceptable for deployment of the transformations. For this reason a Code 

Generator (CG) was also developed for GReAT. CG converts a GReAT specification into 

efficient C++ code that can be compiled to make a stand alone transformer.  

Apart from all the execution engines, an IDE was also developed around GReAT. 

The IDE consisted of an editor for creating GReAT transformations and a suite of tools to 

help the user in this process. The tools accompanying the IDE are divided into three 

different categories (1) Development tools that help users build models, (2) 

Transformation tools that convert the front-end concrete syntax to the abstract 

representations and (3) Invocation tools that invoke GRE, GRD and CG from the 

environment and provide feedback.  

A case study was also presented where GReAT was used to solve the translation 

problem from Simulink/Stateflow to HSIF. This translation was quite complex and 

required different algorithms that performed various graph traversals and manipulations. 

GReAT was able to specify all the components of the transformations and thus 

demonstrate that GReAT can be used to solve large real-world problems.  
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The results section evaluated whether GReAT successfully satisfies the 

requirements that were laid out in the proposal and if it was able to uphold the 

hypothesis. The conclusions were quite convincing as GReAT was able to satisfy all the 

requirements. Evaluation of the expressiveness of GReAT was demonstrated with the 

help of a Turing completeness proof and the example problems solved in it. The 

usefulness issue was a bit difficult as a lot of empirical data over large periods of time are 

required. The usefulness was demonstrated with the help of user experience, some 

empirical data and a listing of all the first class entities in GReAT that would help the 

translator developer. A simple transformation was used as an example to demonstrate that 

GReAT translations can be used to write formal proofs of correctness. 

Future Work 

GReAT is not the end but the beginning of a research direction. Future research in 

this area is divided into two main categories. First is the further development of GReAT 

into a mature graph transformation language that can be used not only in MDA or model-

to-model transformation but also for the manipulation of typed multi-graphs. Data in 

various storage formats such as XML, MOF and databases can be considered as graphs, 

thus widening the scope and impact of GReAT. The current implementation of GReAT is 

a similar to stateless functional languages. One short-term goal is to increase the usability 

of the language by investigating object oriented and component oriented constructs and 

evaluating how they may be used in the transformation language. 

The second research direction is that of using GReAT, a formal language as the 

starting point for “correct by construction” languages where correctness properties are 

guaranteed on every sentence of the language. For example, a transformation language 
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that guarantees not to violate the structural properties of a graph can be called “structure 

preserving”. The next step will be a transformation language that will be “static semantics 

preserving”, and eventually it may be possible to develop transformations that are 

“property preserving”. That is, transformations written in the language are guaranteed to 

preserve graph properties or other domain specific properties. 

The long term goal of the research is to develop a framework that enables the 

rapid development and deployment of robust domain-specific languages. Such a 

framework will need to support the specification and automated implementation of the 

abstract syntax, visualization, static semantics and dynamic semantics of a new language 

with robustness guarantees in a short delivery time. 

164 



APPENDIX A.  

ALGORITHM FOR SINGLE CARDINALITY PATTERN MATCHING 

Function Name : PatternMatcher 
Inputs  : 1. Pattern Graph pattern  
    2. Match p_match (a partial Match) 
Outputs  :  1. List of Matches matches  
 
matches = PatternMatcher (pattern,  p_match)  
{  
 foreach pattern edge with valid binding for both Src and Dst vert 
 { if(corresponding graph edge doesn’t exists)  
  { return an empty match list  
    Bind pattern and host graph edge. 

   Add binding to p_match 
   Delete the pattern edge from the pattern 
  } 
 } 
 Edge edge = get pattern edge with exactly one vertex bound 
 if(edge exists)  
 { vertices = host graph vertices adjacent to bound vertex 
  make a copy of pater in new_pattern  
  Delete edge from new_pattern 
  foreach vertex v in vertices)  
  { new_match = p_match + new binding(unbound pattern 
             vertex, vertex) 
   ret_match = PatternMatcher(new_pattern, graph,  

          new_match)  
   Add ret_match to matches 
  } 
  Return matches  
 } 
 
 If(all patern edges are bound)  
 { Add p_match to matches 
  Return matches 
 } 
 else 
  Return empty list 
} 
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APPENDIX B.  

ALGORITHM FOR FIXED CARDINALITY PATTERN MATCHING 

Function Name : PatternMatcher 
Inputs  : 1. Pattern Graph pattern 
      2. Match p_match (a partial Match) 
Outputs  : 1. List of Packects matches 
 
matches = PatternMatcher (pattern, p_match)  
{ new_pattern = copy of Pattern.  
foreach pattern edge with both Src and Dst vertices bound 
{ if(corresponding edge doesn’t exists between host graph vertices) 
  return false. 
 Add edge binding to p_match   
 Delete edge from new_pattern. 
} 
 
Edge edge = pattern edge with one vertex bound to host graph 
if(edge exists) 
{ Delete edge from new_pattern. 
 foreach vertex v in bound vertices of edge 
 { peer_vertices[v] = vertices adjacent to vetrex bound to v 
 } 
 Intersect all the peer_vertices to form new list peer 
  If(cardinality of peer Ci >= Cd cardinality of corresponding 
pattern vertex) 
 { For(Each combination of Cd from Ci) 
  { peer_c is the unique combination 
   new_match = p_match + new binding(pattern vertex, 
peer_c) 
   ret_match = PatternMatcher(new_pattern, new_match)  
     Add ret_matches to Matches 
  } 
  Return matches.  
  } 
} 
  
If(all patern matches are bound) 
{ Add p_match to matches. 
 return matches. 
} 
else 
 return enpty list. 
} 
} 
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APPENDIX C.  

ALGORITHM FOR VARIABLE CARDINALITY PATTERN MATCHING 

Before defining the algorithm for Variable cardinality pattern matching the 

definitions in Chapter VI need to be extended with some new definitions. 

Vertices Adjacency Table 

Vertices Adjacency Table: A Vertices Adjacency Table vat is an ordered pair of a 

pattern vertex and a set of vertices adjacency.  

vat = (pv, VA}, where VA = {va | va is a vertices adjacency},  

VAT Functions  

GetAdjVertices: AVVVVVPEPVVAT →×××  

VA),(AVV)V,(pe, vaVA,va|AVV 
),,,(,,,,

pvvatreturn
VpepvvaticesGetAdjVertVVVPEpePVpvVATvat

=∧=∈
∈∀∈∀∈∀∈∀

  

Some Additional Functions 

CreateVerticesAdjacencyTablesForPatternVertex : PV  VAT 

return vat
VA) (pv, vat 

above} described |{

above} described V|{V      va

}pv with bindcan  and V oadjacent t are that icesgraph verthost  ofset  a is v|(vV               

pv oadjacent t pv      
)(,1,

pv)} with bindcan  that icesgraph verthost (|{
)(,

adjadj

adjadj

adj

=
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∀
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=∈∀

vavaVA

pvyCardinalitccrCV
Vvvn
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Variable Cardinality Algorithm 

MatchDynamic : M ofset   M HG  PG →××  

if end
matches ofset return   tommatch  add   

then
 bound are edges and rticespattern ve all if else

e)m,hg,d(pg,icNoneBounMatchDynam   
then

φsBound(m))oneVerticeEdgesWithN(e if else
if end   

e)m,hg,(pg,icDstBoundMatchDynam       
else   

e)m,hg,(pg,icSrcBoundMatchDynam       
   then

bound is Src(e) if   
then

φxBound(m))ingleVerteEdgesWithS (e if else
e) m,hg,d(pg,icBothBounMatchDynam   

then
φe if

Bound(m)thVerticesEdgeWithBo  e
m)hg,ic(pg,MatchDynam M,mHG,hgPG,pg

≠=

≠=

≠
=

=∈∀∈∀∈∀

 

 

MatchDynamicBothBound: M ofset  PE M HG  PG →×××  

168 



return
EB)(VB,m  whereEB from eb delete

m)hg,ic(pg,MatchDynam call
EB)(VB m  whereEB  toeb add

E) all ofunoin  (pe,eb
falsereturn Then                 
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MatchDynamicSrcBound: M ofset  PE M HG  PG →×××  

EB)(VB,m  whereVB from  vddelete             
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MatchDynamicDstBound: M ofset  PE M HG  PG →×××  
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EB)(VB,m  whereVB from  vddelete             
EB)(VB,m  whereEB from eb delete             

m) hg, ic(pg,MatchDynam             
EB)(VB,m  whereVB  to vbadd             
EB)(VB,m  whereEB  toeb add             

)V(Src(pe),   vb          
)E(pe,eb             

}),,),(,(|{E             

V if ,VVV  where),Vpe,Dst(pe),ices(vat,GetAdjVertVeach For      
)Vpe,Dst(pe),ices(vat,GetAdjVertV     

Veach for 
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APPENDIX D.  

FORMAL SEMANTICS OF GREAT 

A formal specification of the GReAT execution semantics is described in this 

Chapter. The Object-Z notation [101] has been used for the specification. The 

specification starts with the definition of a graph. 

 

 

Vertices and edges both have a type associated with them. These types must 

conform to the respective metamodels of the graphs. Both host graphs and pattern graphs 

are defined by the same data structure. The additional attributes of the pattern graph, like 

actions are captured separately using maps. The MATCH class is a data structure that 

associates pattern graph elements with host graph elements. (The host graph is the graph 

in which we search for a match.) It contains a partial function from pattern vertices to 

host vertices and another partial function that maps pattern edges to host edges. 
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Apart from the pattern graph, a rule also contains ports that allow it to interface 

with other rules. A port is simply used to connect with another rule. A non-empty set of 

ports form an interface. Each rule must contain an input and an output interface. The 

interface is used to pass along host graph elements. These elements are mapped to the 

ports of an interface to form a packet. A PACKET contains a partial function that maps 

ports to host vertices. 

 

The base class for all elements in the GReAT language that describes some 

operation on the graph is called UNIT. A UNIT consists of (1) a (reference to the) host 
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graph, (2) an input interface (3) an output interface, (4) a set of input packets, and (4) a 

set of output packets. UNIT is then specialized into PRIMITIVE_UNIT and 

COMPOUND_UNIT. PRIMITIVE_UNIT is specialized into RULE and CASE. These 

classes form the atomic building blocks of the GReAT language. The RULE performs an 

elementary transformation operation while CASE is used to check for matches 

(alternatives). 
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PRIMITIVE_UNIT contains a pattern graph, binding of input ports to pattern 

elements and binding of pattern elements to output ports. It also contains many operations 

that are used by RULE and CASE. The most important operation is PatternMatcher. This 
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operation takes as input a partial match of the pattern on the host graph and generates the 

set of all possible complete matches between the pattern and the host graph. This matcher 

algorithm implements the core activity performed during the execution of GReAT 

programs. The other operations include: MakeInitialPartialMatch, that takes a single 

input packet and converts it into a partial match using the input binding information, and 

EvaluateGuard that is used to evaluate an OCL expression on the matches returned by the 

matcher. All matches that fail the guard are discarded. For the sake of brevity the 

EvaluateGuard function is described in English. 

 

A CASE is the simplest of all GReAT components. The Execute function of the 

case takes each input packet and calls the pattern matcher. The matches returned by the 

pattern matcher are then filtered using the guard expression. All successful matches are 

again packaged to form the output packets. The CASE is used only within a TEST 

component. TEST and CASE are used together, to form a conditional execution and 

branching construct. 

The execution of a RULE is similar to that of a CASE. The exception is that in a 

RULE, after the matches are filtered using the guard, the matches are used to perform 

actions on the host graph. These actions can create and/or delete vertices and edges. After 

these actions are performed, the attribute mapping specification is used by 

PerformAttributeMapping operation to fill in and/or modify the attributes of graph 
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vertices and edges. For the sake of brevity, PerformAttributeMapping is described in 

English. 

 

Sequential execution of expressions is expressed using the SEQUENCE class. 

This class maps ports of one UNIT to ports of another UNIT. SEQUENCE is usually 

used to map from the output interface of one UNIT to the input interface of another 
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UNIT. However, it is seen that in compound units SEQUENCE is also used to map the 

input interface of the compound unit to the input interface of contained units. 
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TEST is a UNIT that provides the language with a conditional execution and 

branching construct. A TEST contains an ordered sequence of CASE-es. The execution 

semantics of the TEST is that each CASE within a TEST is executed in order, starting 

from the first case in the sequence. COMPOUND UNIT is the base class of the two 

compound objects in GReAT: (1) BLOCK and (2) FOR_BLOCK. These blocks are 

useful for encapsulating complex rule sequences. The only difference between a BLOCK 

and FOR_BLOCK is in their execution semantics. The compound expressions use a stack 

machine semantics and thus have a ready UnitStack with push and pop operations. 

 

The BLOCK is the simplest compound unit. It encapsulates a set of units along 

with their sequencing. The execution of the block starts with the StartBlock function that 

finds all the units that have a sequence from the input interface of the BLOCK. All these 

units are added to the readyUnitStack along with a copy of the input packets set of the 

BLOCK.  
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The execution is then defined to pop the top of the stack, execute the unit with the 

input packets, use the sequence from the current rule to get the new ready-to-fire units, 
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and add these to the stack. This process is repeated until the readyUnitStack is empty. 

Whenever a unit that has executed is connected to the output interface of the BLOCK, the 

outputs are copied to the output of the BLOCK. The FOR BLOCK is similar to the 

BLOCK with a subtle difference. The execution of the FOR BLOCK starts the unit 

execution stack with only the first input packet. When the stack is empty the process is 

repeated with the next packet until all packets are exhausted. The FOR BLOCK provides 

a depth first execution of all the contained units while the BLOCK provides a breadth 

first execution. 
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APPENDIX E.  

CONFIGURATION ASPECT OF UMT 

Information that is required to run the transformations such as the starting rule of 

the transformation, inputs to and outputs from the transformation, the files involved etc. 

are captured by the configuration aspect of the UML Model Transformer (UMT) 

paradigm.  

In
<<AtomProxy>>

Expression
<<ModelProxy>>

TransformationInput
<<Connection>>

FileObject
<<Atom>>

ObjectPath : field

FileType
<<Model>>

DtdFilePath : field
MetaName : field
Mode : enum
RootClassName : field
RunInMemory : bool

StartRule
<<Reference>>

Configuration
<<Model>>

CodeGenFileName : field
ConfigFile : field

Configurations
<<Folder>>

FileBind
<<Connection>>

File
<<Atom>>

CopyPathName : field
FilePathName : field

dst
0..*

0..*

0..*

0..*

src 0..*0..*

0..*

0..*

src
0..*

dst
0..*

 

Figure 64 Metamodel of the configuration aspect of UMT 

Figure 64 shows the metamodel of the configuration aspect. A configuration 

contains a StartRule that can refer to any Expression. The configuration also contains 

FileType objects that define the type of the file the particular input will belong to. 

FileType instances will contain the paradigm, root object name, the dtd/xsd path, the file 

opertation mode and other information that deals with the file handling. FileTypes 
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contain FileObjects which are place holders defining the particular object in the file that 

will be provided as input to the start rule. TransformationInput is an association that 

associates the FileObjects with the input ports of the StartRule. Entities called File 

provide the names of the default files to be used to run the transformations and are 

associated with their FileTypes using the FileBind association. 
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APPENDIX F.  

THE SIMULINK/STATEFLOW TO HSIF TRANSLATION ALGORITHM 

This algorithm was developed by Dr. Gyula Simon. 

Definition 1 The flat Stateflow state machine contains the set of state , 

being the initial state. The set of transitions is 

},...,,{ 21 NsssS =

1s SST ×⊆ where is a transition 

from  to . The corresponding transition condition is denoted by . 

Tt ji ∈,

is js jiw ,

 

Definition 2 An output variable in the Stateflow diagram is called a switching signal if it 

is connected to a Control Input of a Switch block in the Simulink diagram. The set of 

switching signals in the state machine is }, ...q, q, q {qQ M321= . The value of the 

switching signal in state  is .  q s )value(q, s

 

Definition 3 The switch value of a switching signal q in state s is the following: 

⎩
⎨
⎧ ≥

=
otherwise0

 if1
  

b)threshold( value(q,s)
e(q, s)switchvalu  

where b is the unique Switch block connected to q. 

 

Definition 4 For a switching signal q and state ,  if  either of the 

following conditions hold: 

is  true)  sdefined(q, i =

• q is explicitly set in , or is
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• there exist a switch value u, such that for all j for which  it is true that 

and

 T t j,i ∈

) sdefined(q, j u  )s (q, j =eswitchvalu . 

 

Definition 5 The rank of state s is the number of switching signals that are defined in s. 

The defect of s is defined as s) M - rank(defect(s) = . 

 

Definition 6 The sequence of undefined switching signals in  is defined as is

)idefect(skkkki  , ..., q , q , qq  U
321

= , where  for all 

, and 

 false)  , sdefined(q ikl
=

)t(s, ...defec,  l i21= )defect(si
 k ...   k k <<< 21 .  

 

The algorithm consists of the following steps.  

Step 1. Each state  is split into  is )defect(SiD 2=  locations. The set of locations generated 

from  is . is { }∑ = Diiii   ,2,1, ,...,, σσσ

 

Definition 7 The switch code of location ji,σ  is a binary sequence of length M, denoted 

by i,j,M i,j,i,j,i,j , ..., b, bb  C 21= . The binary values are defined as follows: 

⎪⎩

⎪
⎨
⎧

==

∈
=

defect(si)kkikk

ik

i,j,k  , ..., qq   U,  q  q, n)bit(j - 

 U  qe(qk, si)switchvalu
  b

n 1
where if1

 if
 

The function bit(x, y) defines the yth bit of the binary representation of x, the 1st  

bit being the least significant bit. 
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Definition 8 The coloring is defined on the elements of the switch code. The binary 

values of the code are either black or red, as follows:  

⎩
⎨
⎧

∉
∈

=
ik

ik
i,j,k U  qblack

 U  qred
 ) color(b

 if
 if

 

 

Step 2. The locations are coded and colored according to Definition 7 and Definition 8. 

 

Step 3. Create a transition i,j,n,mτ  between ni,σ  and mj ,σ  if  T ti,j ∈ , and there is no k 

such that  and j,m,ki,n,k  b b ≠  red) color(b j,m,k = . The transition guard for this transition is 

the predicate .   i,jw

 

Definition 9 The set of all transitions in the HSIF description is denoted by Φ .  

 

Definition 10 The Simulink diagram containing M Switch blocks describes the 

reconfigurable dynamic system χ . The dynamic system with a particular setting of the 

switches with switch values  is denoted by M, ..., x, xx 21 ( )M, ..., x, xx 21χ . 

 

Step 4. For each state  copy the algebraic equations defined in the state to locations is

ji,σ , for all . For each location defect(si), ..., , ,  j 2321= ji,σ  generate the additional 

algebraic and differential equations of the system ( )ji,Cχ .  

 

Step 5. Choose 1,1σ  to be the initial location. 
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Step 6. Add the following invariants to location ji,σ : 

• switching signal values from the entry action of , and is

• ( )mi,Wm∨¬  for all indices m for which there exist n such that . The 

operations ¬  and ∨  are the logical not and or operations, respectively.  

Φτ i,m,j,n ∈

 

Definition 11 The location dependency graph is a directed graph on the set 

∑∑∑ N
UUU ....

21
with edges Φ . A location σ  is unreachable if there is no directed 

path in the location dependency graph from 1,1σ  to σ .  

 

Step 7. Prune all unreachable locations from the HSIF description. Also delete the 

transitions connected to unreachable locations. 

186 



REFERENCES 

[1] J. Sztipanovits, and G. Karsai, “Model-Integrated Computing”, Computer, Apr. 
1997, pp. 110-112 

[2] “The Model Driven Architecture”, OMG, Needham, MA, 2002, URL = 
http://www.omg.org/mda/.  

[3] J. Rumbaugh, I. Jacobson, and G. Booch, “The Unified Modeling Language 
Reference Manual”, Addison-Wesley, 1998. 

[4] “Request For Proposal: MOF 2.0 Query/Views/Transformations”, OMG Document: 
ad/2002-04-10, 2002, OMG, Needham, MA. 

[5] Levine, J., T. Mason and D. Brown, "lex & yacc", O'Reilly, 1992, 2nd edition. 

[6] Agrawal A., Karsai G., Ledeczi A., “An End-to-End Domain-Driven Development 
Framework”, Domain-driven development track, 18th Annual ACM SIGPLAN 
Conference on Object-Oriented Programming, Systems, Languages, and 
Applications, Anaheim, California, October 26, 2003. 

[7] Bruno G., “Model Based Software Engineering”, Chapman & Hall, 1995. 

[8] “Model of Computation”, Dictionary of Algorithms and Data Structure, National 
Institute of Standards and Technology, URL = 
http://www.nist.gov/dads/HTML/modelofcompu.html. 

[9] “Finite State Machine”, Dictionary of Algorithms and Data Structure, National 
Institute of Standards and Technology, URL = 
http://www.nist.gov/dads/HTML/finiteStateMachine.html. 

[10] K. L. McMillan, “Symbolic Model Checking: an approach to the state explosion 
problem”, CMU Tech Rpt. CMU-CS-92-131. 

[11] "Turing Machine", The Stanford Encyclopedia of Philosophy (Summer 2003 
Edition), (ed.), URL = http://plato.stanford.edu/archives/sum2003/entries/turing-
machine/. 

[12] “The Church-Turing Thesis”, The Stanford Encyclopedia of Philosophy (E. Zalta, 
Edition), (ed), URL = http://plato.stanford.edu/entries/church-turing/.  

[13] E. A. Lee, http://ptolemy.eecs.berkeley.edu/~eal/ee290n/glossary.html, EE290N: 
Advanced Topics in System Theory, Fall, 1996.  

[14] A. Ledeczi, et al., “Composing Domain-Specific Design Environments”, Computer, 
Nov. 2001, pp. 44-51. 

187 

http://www.omg.org/mda/
http://www.nist.gov/dads/HTML/modelofcompu.html
http://www.nist.gov/dads/HTML/finiteStateMachine.html
http://plato.stanford.edu/archives/sum2003/entries/turing-machine/
http://plato.stanford.edu/archives/sum2003/entries/turing-machine/
http://plato.stanford.edu/entries/church-turing/


[15] J. D. Lara , H. Vangheluwe, “Using AToM3 as a Meta-CASE Tool”,  Proceedings of 
the 4th International Conference on Enterprise Information Systems ICEIS'2002 , 
642-649, Ciudad Real,  Spain, April 2002. 

[16] “Dome Guide”, Honeywell, Inc. Morris Township, N.J, 1999. 

[17] Kim Mason, “Moses Formalism Creation – Tutorial”, Computer Engineering and 
Networks Laboratory (TIK), Swiss Federal Institute of Technology Zurich, CH-
8092, Switzerland, February 9, 2000. 

[18] L. A. Cortes, P. Eles, and Z. Peng, “A Survey on Hardware/Software Codesign 
Representation Models”, SAVE Project Report, Dept. of Computer and Information 
Science, Linköping University, Sweden, June 1999. 

[19] A. Jerraya and K. O’Brien, “SOLAR: An Intermediate Format for System-Level 
Modeling and Synthesis,”, Codesign: Computer-Aided Software/Hardware 
Engineering, J. Rozenblit and K. Buchenrieder, Eds. Piscataway, NJ, IEEE Press, 
1995, pp. 145-175. 

[20] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-
Vicentelli, “A Formal Specification Model for Hardware/Software Codesign,” 
Technical Report UCB/ERL M93/48, Dept. EECS, University of California, 
Berkeley, June 1993. 

[21] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,” Science of 
Computer Programming, vol. 8, pp. 231-274, June 1987. 

[22] C. G. Cassandras, “Discrete Event Systems: Modeling and Performance Analysis”, 
Irwin Publications, Boston, MA, 1993. 

[23] E. A. Lee, “Modeling Concurrent Real-Time Processes using Discrete Events,” 
Technical Report UCB/ERL M98/7, Dept. EECS, University of California, Berkeley, 
March 1998. 

[24] J. Peterson, “Petri Net Theory and the Modeling of Systems”, Prentice-Hall, 
Englewood Cliffs, NJ, 1981. 

[25] G. Dittrich, “Modeling of Complex Systems Using Hierarchical Petri Nets,”  
Codesign: Computer-Aided Software/Hardware Engineering, J. Rozenblit and K. 
Buchenrieder, Eds. Piscataway, NJ: IEEE Press, 1995, pp. 128-144. 

[26] T. De Marco, “Structured Analysis and System Specification”, Prentice-Hall, 
Englewood Cliffs, NJ, 1978. 

[27] C. P. Gane and T. Sarson, “Structured System Analysis: Tools and Techniques”, 
Prentice-Hall International, Englewood Cliffs, NJ, 1979. 

188 



[28] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Data Flow 
Programs for Digital Signal Processing”, Transactions on Computers, C36 (1): 24-
35, January 1987. 

[29] Katsuhiko Ogata, “Modern Control Engineering”, 4th edition.  Prentice Hall, 2001.  

[30] R. J. Mayers, et all, “Information Integration For Concurrent Engineering (Iice) Idef3 
Process Description Capture Method Report”, Human Resources Directorate 
Logistics Research Division, Knowledge Based Systems, Incorporated, Texas 
77840-2335, September 1995. 

[31] A. Kalavade, Edward A. Lee, “Design Methodology Management For System-Level 
Design”, Ptolemy Miniconference, March 10, 1995. 

[32] A. Kalavade, E. A. Lee, “A Global Criticality/Local Phase driven Algorithm for the 
Constrained Hardware/Software Partitioning Problem”, Proc. of Codes/CASHE’94, 
Third Intl. Workshop on Hardware/Software Codesign, pp. 42-48, Sept. 22-24, 1994.  

[33] Edward A. Lee, “Overview of the Ptolemy Project”, Technical Memorandum 
UCB/ERL M01/11 March 6, 2001. 

[34] P. P. Chen. "The Entity-Relationship Model". ACM Trans. on Database Systems 
(TODS), 1:9-36, 1976. 

[35] J. Rumbaugh, I. Jacobson, and G. Booch, “The Unified Modeling Language 
Reference Manual”, Addison-Wesley, 1998. 

[36] M. Fowler, “UML Distilled Second Edition”, Addison Wesley Longman, Inc., 200. 

[37] J. Gray, G. Karsai, “An Examination of DSLs for Concisely Representing Model 
Traversals and Transformations”, 36th Annual Hawaii International Conference on 
System Sciences (HICSS'03) - Track 9, p. 325a, January 06 - 09, 2003. 

[38] “Simulink Reference”, The Mathworks, Inc., July 2002. 

[39] ActiveHDL, http://www.aldec.com/ActiveHDL/, Aldec Inc., Henderson, NV 89074. 

[40] M. E. Lesk, “LEX---a lexical analyzer generator”, CSTR 39, Bell Laboratories, 
Murray Hill, NJ, 1975. 

[41] Johnson S.C., “Yacc: Yet Another Compiler-Compiler”, Bell Laboratories, Murray 
Hill, NJ, 1978. 

[42] K. Czarnecki, U. Eisenecker, “Generative Programming: Methods, Techniques, and 
Applications”, Addison-Wesley, 1999. 

[43] J. Neighbors, “Software Construction Using Components”, Ph.D. Thesis, ICS-TR-
160, University of California at Irvine, 1980. 

189 



[44] J. Neighbors, “Draco 1.2 Users Manual”, University of California at Irvine, 1983. 

[45] Don S. Batory, Jacob Neal Sarvela, Axel Rauschmayer, “Scaling Step-Wise 
Refinement”, International Conference on Software Engineering, pp 187-197, 2003. 

[46] The Moses Project, Computer Engineering and Communications Laboratory, ETH 
Zurich URL = http://www.tik.ee.ethz.ch/~moses/ 

[47] R. Essar, J. Janneck and M. Naedele, “The Moses Tool Suite - A Tutorial”, Version 
1.2, Computer, Engineering and Networks Laboratory, ETH Zurich, 2001. 

[48] J. Janneck, “Graph-type definition language (GTDL)—specification”, Technical 
report, Computer, Engineering and Networks Laboratory, ETH Zurich, 2000. 

[49] J. Lara , H. Vangheluwe, “Using AToM as a Meta CASE Tool”, 4th International 
Conference on Enterprise Information Systems, Universidad de Castilla-La Mancha, 
Ciudad Real (Spain), 3-6, April 2002. 

[50] J. Lara, H. Vangheluwe, “Computer Aided Multi-Paradigm Modeling to Process 
Petri-Nets and Statecharts”, 1st International Conference on Graph Transformation, 
Barcelona (Spain), 7-12, October 2002. 

[51] S. Kent, O. Patrascoiu, “Kent Modelling Framework Version – Tutorial”, Computing 
Laboratory, University of Kent, Canterbury, UK, Draft, December 2002. 

[52] “ABC To Metacase Technology”, White Paper, MetaCase Consulting, Finland, 
August, 2000. 

[53] “Domain-Specific Modelling: 10 Times Faster Than UML”, White Paper, MetaCase 
Consulting, Finland, January, 2001. 

[54] Grzegorz Rozenberg, “Handbook of Graph Grammars and Computing by Graph 
Transformation”, World Scientific Publishing Co. Pte. Ltd., 1997. 

[55] M. Nagl, “Formal Languages of Labeled Graphs”, Computing 16 (1976), 113-137.  

[56] M. Kaul, “Practical applications of precedence graph grammars”, Graph Grammars 
and their application to Computer Science, Lecture Notes in Computer Science 291, 
Springer-Verlag, Berlin, 1987. 

[57] G. Rozenberg, E. Welzl, “Graph Theoretic closure properties of the family of 
boundry NLC graph languages”, Acta Informatica 23, 289-309, 1986. 

[58] R. Schuster, “Graphgrammatiken und Grapheinbettungen”, Algorithmen und 
Komplexitat, Technical Report MIP-8711, Universitat Passau, 1987. 

[59] Annegret Habel, “Hyperedge Replacement: Grammars and Languages”, volume 643 
of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1992. 

190 

http://www.tik.ee.ethz.ch/~moses/


[60] Annegret Habel, “Hypergraph Grammars: Transformational and algorithmic 
aspects”, Journal of Information Processing and Cybernitics EIK, 28:241-277, 1992. 

[61] Michel Bauderon and Bruno Courcelle, “Graph expressions and graph rewriting”, 
Mathematical Systems Theory, 20:83-127, 1987. 

[62] R. J. Parikh, “On context-free languages”, Journal of ACM, 13:570-581, 1966. 

[63] H. Erig, M. Pfender, and H. J. Schneider, “Graph Grammars: an algebraic approach”, 
In Proceegings IEEE Conf. on Automata and Switching Theory, pages 167-180, 
1973. 

[64] M. Lowe, “Algabraic approach to single-pushout graph transformation”, Theoritical 
Computer Science, 109:181-224, 1993. 

[65] Blostein D., Schürr A., ”Computing with Graphs and Graph Rewriting”, Technical 
Report AIB 97-8, Fachgruppe Informatik, RWTH Aachen, Germany. 

[66] E. W. Dijksrta, “Guarded Commands, Nondeterminacy  and Formal Derivation of 
Programs”, Communications of ACM, 18:453-457, 1975. 

[67] G. Nelson, “A Generalization of Dijksrta’s Calculus”, ACM transactions on 
Programming Languages and Systems, Vol. 11, No. 4, pp-517-561, 1989. 

[68] A. Schürr, “PROGRES for Beginners”, Technical Report, Lehrstuhl für Informatik 
III, RWTH Aachen, Germany. 

[69] H. Gottler, “Attributed graph grammars for graphics”, H. Ehrig, M. Nagl, and G. 
Rosenberg, editors, Graph Grammars and their Application lo Computer Science, 
LNCS 153, pages 130-142, Springer-Verlag, 1982. 

[70] H. Göttler, "Diagram Editors = Graphs + Attributes + Graph Grammars," 
International Journal of Man-Machine Studies, Vol 37, No 4, Oct. 1992, pp. 481-
502. 

[71] C. Ermel, T. Schultzke, “The AGG Environment: A Short Manual”, TU Berlin. 

[72] J. Loyall and S. Kaplan, "Visual Concurrent Programming with Delta-Grammars," 
Journal of Visual Languages and Computing, Vol 3, 1992, pp. 107-133. 

[73] D. Blostein, H. Fahmy, and A. Grbavec,  “Practical Use of Graph Rewriting”, 5th 
Workshop on Graph Grammars and Their Application To Computer Science, 
Lecture Notes in Computer Science, Heidelberg, 1995. 

[74] U. Assmann, “How to Uniformly specify Program Analysis and Transformation”, 
Proceedings of the 6 International Conference on Compiler Construction (CC) '96, 
LNCS 1060, Springer, 1996. 

191 



[75] A. Maggiolo-Schettini, A. Peron, “A Graph Rewriting Framework for Statecharts 
Semantics”, Proc.\ 5th Int.\ Workshop on Graph Grammars and their Application to 
Computer Science, 1996. 

[76] A. Radermacher, “Support for Design Patterns through Graph Transformation 
Tools'', Applications of Graph Transformation with Industrial Relevance, Monastery 
Rolduc, Kerkrade, The Netherlands, Sep. 1999. 

[77] A. Bredenfeld, R. Camposano, “Tool integration and construction using generated 
graph-based design representations”, Proceedings of the 32nd ACM/IEEE 
conference on Design automation conference, p.94-99, June 12-16, 1995, San 
Francisco, CA. 

[78] H. Fahmy, B. Blostein, “A Graph Grammar for Recognition of Music Notation”, 
Machine Vision and Applications, Vol. 6, No. 2 (1993), 83-99. 

[79] G. Engels, H. Ehrig, G. Rozenberg (eds.), “Special Issue on Graph Transformation 
Systems”, Fundamenta Informaticae, Vol. 26, No. 3/4 (1996), No. 1/2, IOS Press 
(1995). 

[80] G.Schmidt, R. Berghammer (eds.), “Proc. Int. Workshop on Graph-Theoritic 
Concepts in Computer Science”, (WG ’91), LNCS 570, Springer Verlag (1991). 

[81] H.Ehrig, M. Pfender, H. J. Schneider, “Graph-grammars: an algebraic approach”, 
Proceedings IEEE Conference on Automata and Switching Theory, pages 167-180 
(1973). 

[82] G. Viehstaedt, M. Minas, “Generating editors for direct manipulation of diagrams”, 
5th International Conference on Human-Computer Interaction, Moscow, Russia,  
pages 17-25. Springer-Verlag, July 1995. 

[83] Bardohl,R., Ermel,C., and Weinhold,I., "GenGED - A visual definition tool for 
visual modeling environments", Proc. Application of Graph Transformations with 
Industrial Relevance (AGTIVE'03), pages 407-414, Sept./Oct., 2003, Charlottesville, 
Virginia, USA. 

[84] D. Varro, G. Varro and A. Pataricza, "Designing the Automatic Transformation of 
Visual Languages", volume 44, Elsevier, pages 205–227, Science of Computer 
Programming, 2002. 

[85] Vizhanyo A., Agrawal A., Shi F., “Towards Generation of High-performance 
Transformations”, Generative Programming and Component Engineering, 
Vancouver, Canada, October 24, 2004. 

[86] Agrawal A., Simon G., Karsai G., “Semantic Translation of Simulink/Stateflow 
models to Hybrid Automata using Graph Transformations”, International Workshop 
on Graph Transformation and Visual Modeling Techniques, Barcelona, Spain, 

192 



March 27, 2004, To be published in Electronic Notes in Theoretical Computer 
Science. 

[87] Object Management Group, Object Constraint Language Specification, OMG 
Document formal/01-9-77. September 2001. 

[88] A. Bakay, “The UDM Framework,” http://www.isis.vanderbilt.edu/Projects/mobies/. 

[89] Magyari E., Bakay A., Lang A., Paka T., Vizhanyo A., Agrawal A., Karsai G.: 
“UDM: An Infrastructure for Implementing Domain-Specific Modeling Languages”, 
The 3rd OOPSLA Workshop on Domain-Specific Modeling, OOPSLA 2003, 
Anahiem, California, October 26, 2003. 

[90]  J. McCarthy “Recursive functions of symbolic expressions and their computation by 
machine – I”, Communications of the ACM, 3(1), 184-195, 1960. 

[91] Uwe Assmann, “Aspect Weaving by Graph Rewriting”, Generative Component-
based Software Engineering (GCSE), p. 24-36, Oct 1999. 

[92] G. Karsai, S. Padalkar, H. Franke, J. Sztipanovits, ”A Practical Method For Creating 
Plant Diagnositics Applications”, Integrated Computer-Aided Engineering, 3, 4, pp. 
291-304, 1996. 

[93] E. Long, A. Misra, J. Sztipanovits, “Increasing Productivity at Saturn”, IEEE 
Computer Magazine, August 1998. 

[94] AGG, http://tfs.cs.tu-berlin.de/agg/. 

[95] H. Kreowski, S. Kuske: “Graph Transformation Units and Modules,” in H. Ehrig, G. 
Engels, H. Kreowski, G. Rozenberg, Handbook of Graph Grammars and Computing 
by Graph Transformation, Vol. 2: Applications, Languages and Tools, pages 607-
638. World Scientific, Singapore, 1999. 

[96] Karsai G., Agrawal A., Shi F., Sprinkle J., “On the Use of Graph Transformations 
for the Formal Specification of Model Interpreters”, Journal of Universal Computer 
Science, Special issue on Formal Specification of CBS, 2003. 

[97] J. Gray, G. Karsai, “An Examination of DSLs for Concisely Representing Model 
Traversals and Transformations”, 36th Annual Hawaii International Conference on 
System Sciences (HICSS'03) - Track 9, p. 325a, January 06 - 09, 2003. 

[98] The Hybrid System Interchange Format, for details see 
http://www.isis.vanderbilt.edu/Projects/mobies/downloads.asp  

[99] T. A. Heinzinger, “The Theory of Hybrid Automata”, In Proc. Of IEEE Symposium 
on Logic in Computer Science, IEEE press, pp 278-292, 1996. 

193 

http://www.isis.vanderbilt.edu/Projects/mobies/
http://tfs.cs.tu-berlin.de/agg/
http://www.isis.vanderbilt.edu/Projects/mobies/downloads.asp


[100] Hylands, C., Lee, E., Liu, J., Liu, X., Neuendorffer, S., Zheng, H.,“HyVisual: A 
Hybrid System Visual Modeler,” Technical Memorandum UCB/ERL 
M03/1,University of California, Berkeley, CA 94720, January 28, 2003. 

[101] Roger Duke, Gordon Rose and Graeme Smith, “Object-Z: a Specification 
Language Advocated for the Description of Standards”; TR 94-95, December 1994, 
Software Verification Research Centre, Department Of Computer Science, The 
University Of Queensland, Queensland 4072, Australia. 

[102] J. McCarthy, “Recursive functions of symbolic expressions and their computation 
by machine – I”, Communications of the ACM, 3(1), 184-195, 1960. 

 

194 


