
A FORMAL GRAPH TRANSFORMATION BASED LANGUAGE FOR MODEL-TO-

MODEL TRANSFORMATIONS

By

Aditya Agrawal

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

August, 2004

Nashville, Tennessee

Approved: Date:

__ ___________________

__ ___________________

__ ___________________

__ ___________________

__ ___________________

__ ___________________

To my source of Inspiration, My parents

&

To Pramila, the love of my life

ii

ACKNOWLEDGEMENTS

The DARPA/IXO MOBIES program, Air Force Research Laboratory under

agreement number F30602-00-1-0580 and NSF ITR on "Foundations of Hybrid and

Embedded Software Systems" programs have supported, in part, the research described in

this dissertation. Some tools described in this dissertation have been developed by other

members of the MoBIES team. Feng Shi developed in part the Graph Rewriting Engine

(GRE), Zsolt Kalmar developed the Graph Rewriting Debugger (GRD) and Attila

Vizhanyo developed the Code Generator (CG).

To begin with I would like to thank Dr. Gabor Karsai my academic advisor and

the chair of my dissertation committee. He has motivated and guided me through this

endeavor. His knowledge and patience are virtues I can only dream of achieving. I am

grateful to members of my dissertation committee, Dr. Janos Sztipanovits, Dr. Douglas

Schmidt, Dr. Gautam Biswas, Dr. Jeremy Spinrad and Dr. Mark Ellingham for keeping

my focus on the goals and for directing me back on track when I veered. The MoBIES

team consisting of Dr. Gyula Simon, Dr. Sandeep Neema, Feng Shi, Attila Vizhanyo,

Zsolt Kalmar, Andras Lang, Tamas Paka and Anantha Narayanan deserve my heartiest

thanks for being the greatest teams to work with.

Last but definitely not the least I would like to thank mom and dad for believing

in me all through the journey and encouraging me to push forward whenever I was tired.

Without the training I have received from them I would never have reached where I am.

The rest of my family, Jiten, Shilpa, Roma, Sandhir, Mona, Rashi and Sparsh has played

a vital role in my endeavor. They have been by my side at every crossroad of life helping

iii

me take the right decision. Finally I would like to thank my soul mate Pramila for without

her the journey would definitely have been more challenging and the goals more difficult

to achieve.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS... iii

TABLE OF CONTENTS.. v

LIST OF TABLES... viii

LIST OF FIGURES ... ix

LIST OF ABBREVIATIONS... xii

Chapter

I. INTRODUCTION ... 1

II. BACKGROUND ... 6

Model Based Software Engineering .. 6
Model Classification ... 7
Low-Level and High-Level Modeling Languages.. 8
High-level models ... 16
Low-Level Vs High-Level .. 18
Domain-Specific and Domain-Independent Languages 19
Domain Specific Vs Domain Independent.. 24
Textual and Graphical Languages .. 25

Generative and Model Based Solutions... 25
Generative Programming (GP) ... 26
Model Integrated Computing (MIC)... 29
Summary of Model-Based Solutions .. 38

Graph Grammars And Transformations .. 39
Node Replacement Graph Grammars ... 40
Node Label Controlled (NLC) .. 40
Neighborhood Controlled Embedding (NCE) .. 42
Hyperedge Replacement Graph Grammars .. 46
Algebraic Approach to Graph Transformation ... 48
Programmed Graph Rewriting Systems.. 51
Programmed Structure Replacement Systems .. 55
Summary of Graph Grammars and Transformations.................................... 57

Graph Transformation Based Tools... 58
PROGRES... 58
AGG.. 59
Comparison of Features .. 60

v

Critique of Graph Transformation Tools .. 60

III. RESEARCH PROBLEM, HYPOTHESIS AND METHODS 63

Research Hypothesis.. 67
Research Methods.. 68
Completion Criteria ... 69

IV. GREAT: A MODEL-TO-MODEL TRANSFORMATION LANGUAGE 71

Heterogeneous Graph Transformations ... 71
Definitions ... 75
The Pattern Specification Language .. 76

Simple Patterns ... 76
Fixed Cardinality Patterns... 78
Extending the Set Semantics... 82
Cardinality for Edges .. 84
Variable Cardinality.. 84
Pattern Graph and Match Definition... 86

Graph Rewriting/Transformation Language.. 87
Language Realization.. 89

The Language For Controlled Graph Rewriting And Transformation 90
Sequencing of Rules ... 93
Hierarchical Rules... 94
Branching using test case.. 98
Non-deterministic Execution .. 100
Termination... 102

Enabling Optimized Graph Transformations... 102
Typed Patterns .. 102
Pivoted Pattern Matching.. 103
Reusing Previously Matched Objects ... 104
User Controlled Traversal... 105

V. THE EXECUTION FRAMEWORK FOR GREAT.. 107

Concrete Syntax... 108
Abstract Syntax.. 110
Execution Engine... 112
Graph Rewriting Debugger (GRD).. 118
Code Generator .. 119
Comparison of CG with GRE.. 120
Integrated Development Environment... 123

Model Development Tools ... 125
Execution Invocation Tools .. 126

VI. A CASE STUDY – SIMULINK/STATEFLOW TO HSIF 127

The Inputs and Outputs of the Semantic Translator .. 128

vi

The output: HSIF .. 128
The input: A subset of the MSS language .. 128
Example: Tank Level Control... 129

Implementing the Algorithm in GReAT.. 132
Translating Stateflow .. 132
Translating Simulink... 138
Translating the Tank Level Control example ... 139

Summary.. 140
Conclusion ... 142

VII. RESULTS, CONCLUSIONS AND FUTURE WORK... 143

Results.. 143
Requirement 1 ... 143
Requirement 2 ... 143
Requirement 3 ... 143
Requirement 4 ... 144
Requirement 5 ... 144
Requirement 6 ... 148
Requirement 7 ... 149
Requirement 8 ... 149
Requirement 9 ... 149
Revisiting the Research Hypothesis and Completion Criteria.................... 156

Conclusion ... 159
Future Work... 163

Appendix

A. ALGORITHM FOR SINGLE CARDINALITY PATTERN MATCHING 165

B. ALGORITHM FOR FIXED CARDINALITY PATTERN MATCHING 166

C. ALGORITHM FOR VARIABLE CARDINALITY PATTERN MATCHING ... 167

D. FORMAL SEMANTICS OF GREAT .. 171

E. CONFIGURATION ASPECT OF UMT .. 181

F. THE SIMULINK/STATEFLOW TO HSIF TRANSLATION ALGORITHM.... 183

REFERENCES ... 187

vii

LIST OF TABLES

Table Page

1. Comparison of Various MIC Tools..37

2. Comparison of Graph Transformation Tools ...60

3. Concrete Syntax of the pattern graph and the rule interface109

4. Mapping Simulink blocks to sub expressions ..139

5. Compilation of different projects developed in GReAT..158

viii

LIST OF FIGURES

Figure Page

1. An Example Petri Net ..14

2. Basic notations of UML class diagrams [36] ...18

3. an Example IDEF3 Process Description Diagram [30] ...21

4. Design Methodology Management using Ptolemy [31] ..23

5. The MIC Development Cycle [1]...30

6. A NLC production..41

7. Application sequence of a production ..42

8. A NCE production..43

9. Two graphs with embedding and the result of their substitution [54]45

10. Hyperedge production ..46

11. An example to demonstrate the hyperedge production..46

12. DPO production..50

13. SPO production and example ...51

14. A production in the PROGRES system..55

15. Metamodel of hierarchical concurrent state machine using UML class diagrams. .72

16. Metamodel of a simple finite state machine...73

17. A metamodel that introduces cross-links ...74

18. Non-determinism in matching a simple pattern ...77

19. Pattern specification with cardinality...79

20. Pattern with different semantic meanings ..81

21. Conflicting match for the tree semantics..82

22. Hierarchical patterns using set semantics...83

ix

23. Pattern with cardinality on edge...84

24. Variable cardinality pattern and family of graphs..85

25. An example rule with patterns, guards and attribute mapping.................................90

26. UML class diagram for the abstract syntax classes of GReAT: The core
transformation classes ..91

27. UML class diagram for the abstract syntax classes of GReAT: The interface92

28. Firing of a sequence of 2 rules ...94

29. Rule execution of a Block ..95

30. Sequence of execution within a Block..96

31. Rule execution sequence of a ForBlock ...97

32. Execution of a Test/Case construct ..98

33. Execution of a single Case ...99

34. Inside the execution of a Test ...100

35. A non-deterministic execution sequence..101

36. Pivoted Matching ...104

37. Transformation Rule with pivot ...104

38. Sequence of rules with passing of previous results..106

39. Concrete syntax of the different expressions in GReAT.......................................108

40. GR: the abstract syntax of GReAT ..111

41. High-level block diagram of GRE ...114

42. Block execution algorithm ...115

43. For block execution algorithm ...116

44. Test execution algorithm..117

45. Algorithm for rule execution..118

46. Performance graphs for Df Fdf ...121

47. Performance graphs for Hsm Fsm ...122

x

48. Block diagram of the GReAT IDE...124

49. A tank with three valves...130

50. The ”true” (hybrid automata) state machine for the tank example131

51. The StateflowPart Rule ..133

52. The HSM2FSM rule...133

53. Inside the OR rule ..134

54. ElevateChildOr rule ...135

55. The StateSplitting rule..136

56. The SetImplicitValues Rule ...137

57. Stages of Stateflow splitting...140

58. The domain of Turing machines ..145

59. The top-level rule of Turing machine ..146

60. Internals of RunMachine ..146

61. Inside Q1 block, choosing action for current state and symbol147

62. Action taken for a particular State, symbol pair...148

63. Transformation to make isomorphic copy of graph ...150

64. Metamodel of the configuration aspect of UMT..181

xi

LIST OF ABBREVIATIONS

UML – Unified Modeling Language

MDA – Model Driven Architecture

OCL – Object Constraint Language

DSL – Domain Specific Language

GPL – General Purpose Language

GP – Generative Programming

MIC – Model Integrated Computing

GReAT – Graph Rewriting And Transformation

GRE – Graph Rewriting Engine

GRD – Graph Rewriting Debugger

CG – Code Generator

MoC – Model of Computation

FSM - Finite State Machine.

CFSM - Codesign Finite State Machine.

TM – Turing Mcahine

HPN - Hierarchical Petri Nets.

SDF - Synchronous Data Flow.

ADF - Asynchronous Data Flow.

OMG – Object Management Group

AHEAD – Algebraic Hierarchical Equations for Application Design

DSDE – Domain Specific Design Environment

xii

DOME – Domain Modeling Environment

GTDL – Graph Type Definition Language

ER – Entity Relation

KMF – Kent Modeling Framework

GME – Generic Modeling Environment.

NLC – Node Label Controlled

NCE – Neighborhood Controlled Embedding

DPO – Double Pushout

SPO – Single Pushout

PROGRES – PROgrammed GRaph REplacement System

PSRS – Programmed Structure Replacement System

DSMDA – Domain-Specific Model Driven Architecture

DSPIM – Domain-Specific Platform Independent Model

DSPSP – Domain-Specific Platform Specific Model

DSME – Domain-Specific Modeling Environment

HCSM – Hierarchical Concurrent State Machine

GSS – Grouped Set Semantics

UMT – UML Model Transformer

GR – Graph Rewriting

UDM – Universal Data Model

MSS – Matlabs Simulink and Stateflow

HSIF – Hybrid System Interchange Format

HA – Hybrid Automata

xiii

XML – eXtensible Markup Language.

XSD – XML Schema Definition

xiv

CHAPTER I

INTRODUCTION

The evolution of programming languages shows a clear direction towards higher

levels of abstraction. This evolution started from assembly languages, went on to

procedural languages, then to object-oriented languages and now the state of the art is

component-oriented languages and frameworks. In the same timeframe, top down

approaches classified as Model Based Software Engineering [7] tried to develop high-

level graphical languages and generate assembly/machine code from them. These

approaches attempted to bridge large semantic gaps between very-high-level semantic

models and very-low-level languages. There were many challenges in such an enterprise

and tool infrastructures and frameworks did not live up to expectations. This led to their

failure to achieve the goals set by the community. This community found success in more

rigorous domain-specific fields such as embedded systems where formal and graphical

models were already in use. An example of such a success is Matlab’s

Simulink/Stateflow [38] modeling language. With the advent of Unified Modeling

Language (UML) and Model Driven Architecture (MDA) that advocate the use of models

in software development, the communities were brought together and are producing

promising results.

Languages can also be divided into textual and graphical categories. Graphical

languages are usually impractical for general-purpose programming but can be useful in a

limited context in specific domains. We believe that a mixed textual and graphical

notation can be helpful in limited domains. For example, in the software development

1

domain, the UML [3] specification has both textual (Object Constraint Language) and

graphical (Use-Case Diagram, Class Diagram, etc.) notations. In hardware development

domain, tool vendors [39] are now providing a graphical notation for the structural

description of hardware while the behavioral description is still textual.

The primary reasons behind the limited success of Domain Specific Languages

(DSLs) have historically been the following:

• DSLs are more expensive to create as the development cost and time is borne by a

small user community

• Since there is a small user base, tools and support for a DSL is not at par with General

Purpose Languages (GPLs) and

• The wide user base and longer life of GPLs helps make the language implementations

robust and reliable.

For DSLs to become more popular, the three hurdles mentioned above must be

addressed. A key limitation is the cost of development (in terms of time and effort), which

we conjecture can be reduced by creating a framework for developing DSLs. This

approach has several advantages. First, the framework can be used to develop many

languages, and thus the cost and time of development is reduced and can be absorbed by

a larger community. Second, the framework can be the focal point for a wider user base,

thus making it profitable for industries to provide support and tools. Within the

framework there will be a development cost for a given DSL that needs to be minimized

for the framework to be effective.

In the field of textual languages and compiler design there exists vast literature on

textual grammars, parsers, parser generators and other formal methods to specify and

2

implement textual languages and compilers. This helps automate the different stages of

language development and makes it easy to develop and deploy new languages. For

instance, regular expressions can be used to specify language lexemes and a lexical

analyzer generator such as Lex [5] can be used to automatically generate the lexical

analyzer. Similarly, a context free grammar specification can be used to specify the

language grammar and a parser generator such as Yacc [5] can be use to produce the

parser. These tools focus on converting a textual notation into tokens and then into trees.

In graphical languages the starting point is a graph of objects that represents the program.

The biggest challenge is in converting this graph into another graph (abstract syntax tree)

of a known programming language. In compiles for textual languages this stage is usually

straightforward but not much automation is available. For graphical domain specific

languages theory and tools need to be developed for this stage of the

compilation/translation.

Currently, areas such as Generative Programming (GP) [42] and Model Integrated

Computing (MIC) [1] have tried to explore different methods for the specification of

domain-specific languages and their compilers. Formal definition and automated

implementation of model-compilers is one field in this domain that has vast potential.

Design and development of such a system should be based on a sound mathematical

foundation.

Extensions of grammars for textual languages to graphs have been proposed for

over 20 years and have emerged into a field called graph grammars and transformations.

Such a foundation can be used for the formal specification and automated implementation

of model compiler and model-to-model transformers. However, these results have not

3

been applied to the development of methodologies or tools that facilitate the development

of modeling languages. Applying theoretical work of graph grammars towards the design

of modeling languages seems to have much potential. Although these concepts cannot be

applied directly, they can be used as a foundation for addressing the needs and

requirements of model transformations.

This dissertation shows how graph grammar and transformation can be used as

the formal foundation to develop a model-to-model transformation language that can be

used to specify and automatically implement model transformer. Such a language would

address the current deficiency of MIC frameworks.

This dissertation is organized as follows: Chapter I is a survey in the fields of

model-based software engineering. Generative Programming and Model Integrated

Computing techniques are explored to study their strengths and weaknesses as a domain-

specific modeling framework. It is followed by a review of the theoretical work on graph

grammars and transformations in Chapter II to investigate if it may be able to solve some

problems identified in the meta-programmable tools. A survey of some of the notable

graph grammar and transformation based tools and evaluation of the tools is presented.

Chapter III summarizes the findings in the background section and states the

dissertation proposal along with the goals, completion criteria and metrics for measuring

success.

Chapter IV describes Graph Rewriting and Transformation (GReAT) a model-to-

model transformation language based on the theoretical word of graph grammars and

transformations. The language developed is divided into four parts and each part is

described along with their motivation, design decisions and tradeoffs. The last part of the

4

Chapter compiles all the language features that were developed to increase the efficiency

of the execution of the transformations.

Chapter V describes the tool infrastructure developed for GReAT. First, the

concrete and abstract syntax of GReAT are described. Then, an interpreter for the

GReAT called Graph Rewriting Engine (GRE), a debugger called Graph Rewriting

Debugger (GRD) and a compiler that produces C++ code called Code Generator (CG) are

discussed. This is followed by the description GReAT’s integrated development

environment.

Chapter VI describes the use of GReAT to solve a challenge problem chosen for

study. The Chapter states the challenge problem, its input and output, the algorithm for

solving it and the implementation in GReAT. Finally the Chapter draws some

conclusions about GReAT based on this case study.

Chapter VII presents results to evaluate whether GReAT and its implementation

meet the requirements stated in Chapter III. Conclusions are drawn and future directions

of this work are explored.

5

CHAPTER II

BACKGROUND

Model Based Software Engineering

Software engineering is a discipline where a variety of challenges have to be met

frequently. These challenges are mainly due to three causes: (1) System complexity:

inherent complexity of the problem domain, logic and software development. (2)

Implementation technology complexity and (3) Organization of the development process.

A great deal of research effort has gone into each of the above mentioned areas and

specifically in the area of System complexity. To mitigate system complexity there has

been a continual quest to raise the level of abstraction used for the specification of such

systems. By raising the level of abstraction the developer do not have to think about the

finer details that the new abstraction hides and can focus their energies to building bigger,

better and more complex systems.

This trend is apparent in programming languages that started from machine

languages and have evolved to the state of the art in object-oriented and component-

based languages. This quest has also given rise to various model-based techniques that

use abstractions of the problem domain to specify the solution [7].

In engineering models are abstractions of the real world and are used to precisely

describe and analyze the working of some relevant portions of the physical system. Some

examples of models are: scaled models of buildings and cars that function in the same

manner as their real life counter parts.

6

The main benefit of models is that they help in abstracting away irrelevant details

while highlighting the relevant. Mathematical models are often found in many disciplines

such as control engineering where the functioning of a plant is described in terms of

differential equations. Such abstract and formal models are often used for analysis

through simulation and formal verification.

The software engineering discipline has only recently begun to adopt modeling.

Modeling languages that are suitable for expressing various aspects of software have

been introduced and are being used in the community. Some example languages are

dataflow and its variants [26][27][28], state machine and state charts [18][19][20][21],

entity-relationship diagrams [34] and more recently object-oriented modeling languages

such as UML [35]. Several tools have been implemented that allow graphical

specification of the structure and behavior of software a subset of the formalisms

mentioned above. These tools try to automate the process of simulation, verification and

synthesis of the end system. [7]

In this Chapter various modeling techniques are studied to find their strengths and

weaknesses. An attempt will be made to generalize these results to classes of languages.

The modeling languages studied will be classified based on various criteria. Results of all

the languages that fall into one class can then be studied to find commonalities. These

commonalities should provide insight into the general properties that pertain to languages

belonging to the class.

Model Classification

A model is an abstract representation of a system. There are various notations for

the specification of models and models are used for varied purposes. Modeling languages

7

can be classified based on various attributes. One such classification can be based on

level of detail captured in the models and it can vary from very precise low-level

modeling languages to abstract high-level languages. Another classification can be based

on the scope of the languages; it can vary from general purpose languages to highly

customized domain-specific language. Modeling languages can also be classified based

on their notation into visual, textual or both.

The rest of this Chapter will explore a few of these classifications and try to draw

conclusions on the merits of the various classes of modeling languages.

Low-Level and High-Level Modeling Languages

One criterion for classification is the level of abstraction/detail captured by the

models. On one hand low-level models, called Models of Computation (MoC) that

precisely describe how computation is done. On the other hand high-level models are

used to specify design and intention. In this context low-level languages are defined as

those that are tightly coupled to the semantics of the underlying machine or to a MoC.

High-level languages on the other hand are those where a numerous abstractions have

been built on top of the underlying machine or languages that are closer to a problem

domain. The next sub section will describe a few low-level and high-level modeling

languages and compare them.

The formal definition of Models of Computation (MoC) is:

 “A formal, abstract definition of a computer. Using a model one can
more easily analyze the intrinsic execution time or memory space of an
algorithm while ignoring many implementation issues. There are many
models of computation which differ in computing power (that is, some
models can perform computations impossible for other models) and the
cost of various operations.”

[8]

8

Model of Computation (MoC) is a platform independent abstraction of a

computing device. MoCs have precise execution semantics and are not tied to an

implementation. Generating an implementation from an MoC for a particular platform is

usually a simple and straightforward process. Examples of widely used MoCs are Finite

State Machine (FSM), Turing Machine, Discrete-Event and Petri Nets. This section will

review these MoCs.

Finite State Machine (FSM)

Finite State Machines (FSMs) are a state based model of computation where the

behavior of the system only depends on the current state, and the current input. FSMs are

defined as:

“A model of computation consisting of a set of states, a start state, an
input alphabet, and a transition function that maps input symbols and
current states to a next state. Computation begins in the start state with an
input string. It changes to new states depending on the transition function.
There are many variants, for instance, machines having actions (outputs)
associated with transitions (Mealy machine) or states (Moore machine),
multiple start states, transitions conditioned on no input symbol (a null) or
more than one transition for a given symbol and state (nondeterministic
finite state machine), one or more states designated as accepting states
(recognizer), etc.”

[9]

Formally, a FSM is defined as a 5-tuple, FSM = (S, Σ, T, s, A) where:

Σ = {e1, e2, e3, …, en} is an alphabet set

S = {s1, s2, …, sm} is a set of states

T : S × Σ → P(S) is a transition function.

s an element of S is the start state

A a proper subset of S is a set of accept states

The Finite State Machine (FSM) representation is useful in describing

applications that are tightly coupled with their environment. It is also suited for control-

9

dominated and reactive applications. However, concurrency is not easily captured and

results in the exponential growth in the number of states with linear increase in degree of

concurrency. This problem is known as the “state space explosion” problem. In order to

overcome these weaknesses of classical FSM, a number of extensions such as hierarchy

and concurrency have been developed. A few such variants are discussed in brief [18].

SOLAR [19], a design representation for high-level control flow dominated

systems is an extension of the FSM representation. Concurrency is achieved by capturing

parallel components of the system as separate FSMs that communicate with each. The

communication between FSMs is either with the help of ports that are wired together or

with the help of communication channels that implement a protocol. Each component can

either be a FSM or be composed of smaller FSMs. Thus the model allows hierarchical

decomposition of the system.

Codesign Finite State Machine (CFSM) [20] is another model based on the FSM.

It is intended to describe embedded applications with low algorithmic complexity. Both

hardware and software can be depicted using this model of computation. It can be used to

partition and implement applications. The basic communication primitive is an event and

the behavior of the system is defined as a sequence of events. The events are broadcasted

and have zero propagation time. This model of computation is used as an intermediate

representation that high-level languages can map to [18][20].

Statecharts by Harel [21] is another extension of FSMs that provides three major

facilities, namely hierarchy, concurrency and communication. Statecharts are high-level

Finite State Machines having AND and OR states. The AND states primarily achieve

concurrency while the OR states are for representing hierarchy. Communication is based

10

on events that are broadcasted instantaneously. This representation is well suited for large

and complex reactive systems.

Finite State Machines (FSMs) are a simple yet powerful MoC and can be used to

represent a wide range of systems from digital logic to communication protocols. FSMs

have been widely studies and there are well established analysis methods and tools such

as SMV [10]. However, large problems with concurrent behavior become very difficult to

express due to the “state space explosion” problem. This prompted the introduction of a

number of FSM variants. These variants have introduced a number of abstractions to deal

with concurrency and mitigation of complexity. SOLAR, CFSM or Statecharts can be

considered as high-level modeling formalisms useful for the specification of large

problems. Functions can be specified that maps these high-level representations to FSM

which is a domain- independent, platform-independent MoC. By writing these

transformations, users not only benefit from the use of high-level modeling languages but

also from the verification capabilities of the low-level MoC. Furthermore, the abstract

FSM representation can then be converted to a platform-specific implementation suitable

for a particular platform. This helps in isolating the implementation from its intended

behavior as specified by the requirements.

Turing Machine

A Turing machine is a computational device that is based on the notion of a tape,

a read/write head and a controller for the head that is based on a finite state

representation. It is defined as:

“A model of computation consisting of a finite state machine controller, a
read-write head, and an unbounded sequential tape. Depending on the
current state and symbol read on the tape, the machine can change its

11

state and move the head to the left or right. Unless otherwise specified, a
Turing machine is deterministic.”

[11]

Formally, a Turing Machine (TM) is a represented as a 5-tuple T = (Q, Σ, Γ, q0,

δ), where

Q = {q0, q1,…, qm} is a finite set of states

Σ = {s1, s2, …, sn} is a finite set of symbols called the input alphabet

Γ is a super set of Σ is a finite set of symbols called tape symbols

q0 is an element of Q is the initial state

},,{}){(}){(}){(: SLRhQQ ×∆Γ×→ΑΓ× UUUδ is a transition function

Here denotes the blank and R, L and S denote move the head right, left and do

not move it, respectively and h denotes the halt state.

∆

A Turing machine consists of an infinite single dimensional tape, a read/write

head and a finite state machine controlling the actions of the head. Each cell of the tape

can contain a binary digit (0 or 1). Based on the current state and value at cell, an action

is performed. The action can write a new value at the current location and possibly move

the head by one position in either left or right direction. It can also change the state of the

machine by taking a transition to another state.

This simple machine is a complete abstraction of a computing device. A Turing

machine can solve any problem that can be expressed as a general recursive function [12]

and Turing completeness is used as a measure of the expressiveness of programming

languages. In practice, programming Turing machines is quite cumbersome. Instead high-

level Turing complete programming languages such as C, C++ are used for programming

needs.

12

Discrete-Event Systems

Systems that have discrete states and are driven by events over a period of time

are referred to as Discrete-Event Systems [22].

Discrete Event Systems are described at an abstraction level where the
time base is continuous (R), but during a bounded time-span, only a finite
number of relevant events occur. These events can cause the state of the
system to change. In between events, the state of the system does not
change.

Hans Vangheluwe

These systems are asynchronous in nature and react to the discrete events over

time. An event is considered instantaneous, that is the transition and actions are

performed in zero time. As opposed to FSMs, Discrete event systems are not restricted to

finite number of states. In Discrete event systems an event it tied to time while this may

not necessarily be the case for FSMs.

Events over time are the primary method of communication between tasks. The

events are time stamped and are sorted and processed in chronological order. Discrete-

Event Systems are backed with formal mathematical descriptions [23] that facilitate

formal verification and construction of deterministic systems. Though these systems are

well suited for real-time applications, the primary disadvantage is the computational cost

of sorting the events globally to maintain the chronology.

Petri Nets

Petri-Nets [24] is a graphical representation introduced by Carl Adam Petri. Petri

Net is a mathematical tool that can be used to represent diverse semantic domains ranging

from data-dominated to control-dominated applications. Semantics can be added to the

models according to the domain. Some example domains are communication protocols,

13

distributed software, compilers and operating systems. A Petri-Net is described as a 5-

tuple, PN={P, T, F, W, Mo} where:

P = {p1, p2, p3, …. ,pm } is a finite set of places

T = {t1, t2, t3, …….,tm } is a finite set of transitions

F is a subset of (P x T) U (T x P) is a set of arcs giving flow relations

W: F -> {1, 2, 3, … } is the weight function

Mo: P -> {0, 1, 2, ….} is the initial marking

Places hold tokens, and a transition occurs when the number of tokens required

for the transition is present in the required places. A transition removes a specific number

of tokens from its source and adds tokens to its destination. The number of tokens at each

place in the Petri Net defines its state.

(a) (b) (c)

Figure 1. An Example Petri Net

Figure 1 shows three stages of an Example Petri Net. Figure 1(a) shows a state

where there are three people standing on a bus stop and the bus is arriving; Figure 1(b)

shows the net after two transitions have taken place. The first transition causes one token

to move from the ‘Bus arriving’ place to the ‘Bus waiting’ place, the second transition

14

causes one token to move from ‘Person waiting’ to ‘Person on bus’ place. Finally Figure

1(c) shows the state of the net after the transition from ‘Bus waiting’ to ‘Bus leaving’.

The primary features of Petri Nets are concurrency and asynchronicity. Another

advantage is that a number of mathematical analyses that can be performed on them.

However, the lack of hierarchy makes Petri Nets difficult to be used for

developing large systems. Hierarchical Petri Nets (HPNs) [25] have been developed to

mitigate the complexity of a flat representation. HPNs are modeled using bipartite

directed graphs with inscription on the nodes and edges. There are two types of nodes,

transitional nodes that represent activity and places that represent data or the state of the

system. This approach extends the Petri Net semantics with hierarchy making it suitable

for complex systems.

Data Flow Graph

The classical programming structure of computer-based systems is control based

as described by the Von Neumann machine. An alternative approach is data-dominated

where the control flow is determined by availability of data. These systems have nodes

describing computation, and edges between nodes denoting a data path. If a node has

sufficient data available on its incoming edges then it is ready to fire and will use the

input data to generate output data. Transfer of data between computational modules is

typically done with the help of buffers. This allows the tasks to run independently.

Formally, a dataflow diagram can be represented as a tuple (C, Df, s) where

C={c1, c2, … , cn} is a set of nodes and

Df : C → C is a dataflow relation that captures data dependency

15

s : Df → Integers is the initial tokens function that defines the initial

set of tokens in each dataflow relation.

There exist a number of variants of data flow. The two popular and distinct ones

are Synchronous Data Flow (SDF) and Asynchronous Data Flow (ADF). In SDF the

number of token produced and consumed by each node is fixed and needs to be known at

the system design stage. This requirement allows SDF to be statically scheduled [28]. A

static schedule is one that can be computed offline, has a finite sequence of execution of

the nodes and requires bounded buffers where the maximum size of the buffers is known

beforehand. ADF is defined as a data flow graph with unbounded buffers where

computations can produce and consume variable number of tokens. Since the

consumption and production of tokens can change at runtime, ADF cannot be scheduled

statically and results it a greater run-time cost. However, it can be used to represent a

large number of systems and is more flexible than SDF. Many extensions have been

proposed to augment the data flow representation with hierarchy, strong data typing of

tokens and parameterized nodes.

High-level models

High-level models describe systems at a higher level of abstraction. These models

may be specified with few or no implementation details. A few examples are partial

differential equations that specify the behavior of a controller [29], block diagrams that

define the design of system artifacts, and high-level state machines that convey the basic

behavior of a system. System level modeling languages fall in this category.

With recent advances in generation technologies, there is a push towards turning

high-level languages such as UML into executable artifacts. An executable model is one

16

where sufficient information is captured to facilitate the synthesis of low-level details.

This section will highlight UML as a widely used system-level modeling language.

Unified Modeling Language (UML)

Unified Modeling Language (UML) [35] is an Object Management Group (OMG)

standard for diagrammatically representing object-oriented designs. UML consists of a

number of diagrammatic representations and an UML class diagram is one of them. Class

diagrams graphically represent classes along with their member variables and functions.

Inheritance, aggregation and other associations are also graphically represented. These

class diagrams are a standardized and clean way to represent the design of complex

systems. The important aspects of diagrammatic representation are discussed here to

provide a quick overview.

Figure 2 depicts the basic notations. A class is represented with the actual name of

the class in place of the Class Name text. The name in angular braces depicts the

stereotype of the class. A stereotype states that the class conforms to the strict rule

defined by the stereotype. For example, in this paper the stereotype <<atom>> is used.

The atom stereotype states that classes that confirm to the <<atom>> stereotype should

not contain other classes. Attributes and operations are listed in separate containers

within the class rectangle.

Class specialization is depicted using a triangular connector called

‘discriminator’. The class connected to the top of the triangle is the supertype while the

classes connected to the bottom are subtypes. Associations between classes are depicted

by a line between the classes. The roles the classes play in an association and their

cardinality can be specified on the association. Alternatively an association class can be

17

specified to capture more information about the association. Composition represents a

special kind of association. It specifies that a composer class can contains instances of the

composed class and these instances cannot exist outside the composer class. The

composition is depicted with a line having a solid diamond towards the composer class.

The role and cardinality of the composing class is also specified on the composition line.

Cardinality specifies the numeric range of objects that are part of the association. For

example, class A is composed of 2 instances of class B, then the cardinality of class B in

this composition is said to be 2. Cardinality can be specified as a fixed number or a

possible range of numbers. The different notations of cardinality are shown in Figure 2.

Figure 2 Basic notations of UML class diagrams [36]

Low-Level Vs High-Level

In the previous sections we have reviewed a few representative low-level and

high-level modeling formalisms. Low-level MoCs are useful for precise specification of

computing systems and have direct mappings to a computing device. For instance, FSMs

18

can be implemented using either digital logic or software. Algorithms for mapping a

MoC to an implementation can be and have been in many cases, fully automated. Thus,

we can view the low-level MoCs as executable computing devices. However, we have

seen that these low-level MoCs are not an efficient method for the specification of large

systems and sometimes do not scale well in their representation. For example, FSMs

cannot be used for the specification of large parallel systems because of the state space

explosion problem. Thus, other representations that help mitigate complexity such as

State Chart and UML are used to describe large systems.

There exists a gap between the MoCs like FSM and Turing machine, and high-

level representations such as architecture level block diagrams, State Charts and UML. In

some cases humans are required to comprehend the problem and its solution using high-

level representations and then encode the solution using programming languages such as

C++ or Java. Some systems provide automated or semi automated programs to convert

the high-level specification to the equivalent executable code. However, these translator

programs are often difficult to develop and require a large amount of programming time,

and effort.

Domain-Specific and Domain-Independent Languages

In many domains such as business or scientific computing, the high-level

representations as well as the MoCs can be very specific. In such cases customized tool

suites are required to leverage the benefits of the domain and to significantly increase

productivity.

This leads to another classification of modeling languages based on the scope.

Models can be classified as either domain-specific or domain independent. The definition

19

of a domain makes a great difference in this classification. In this paper the universal set

is considered as the computing domain of computer programs i.e. general recursive

functions. In this context a domain-specific computing paradigm will be one that does not

span the entire computing space and/or one that makes a set of assumptions based on the

domain.

Domain-Specific Modeling

Modeling formalisms discussed in the previous section were universal. They

encompass large domains such software design or the domain of computability. Modeling

formalisms that are tailored for a specific domain help users specify systems using

domain concepts they are familiar with. Domain-specific modeling also allows users to

specify systems at a higher level of abstraction. In such restricted domains, executable

systems can be synthesized from high-level abstractions as domain knowledge can be

used to fill in implementation details. There are many successful domain-specific

languages available, for example Matlab Simulink/Stateflow, Ptolemy and IDEF3. This

section describes a few of these domain-specific modeling formalisms.

IDEF3 - Process Flow And Object State Description Capture Method

The IDEF3 Process Description Capture Method provides a mechanism for

collecting and documenting processes. IDEF3 captures precedence and causality relations

between situations and events in a form natural to domain experts. This is achieved by

providing a structured method for expressing knowledge about how a system, process, or

organization works [30].

IDEF3 captures the behavioral aspects of an existing or proposed system.

Captured process knowledge is structured within the context of a scenario, making

20

IDEF3 an intuitive knowledge acquisition device for describing any system. IDEF3

captures all temporal information, including precedence and causality relationships

associated with enterprise processes. The resulting IDEF3 descriptions provide a

structured knowledge base for constructing analytical and design models. These

descriptions capture information about what a system actually does or will do and also

provide for the organization and expression of different user views of the system [30].

There are two IDEF3 description modes, process flow and object state transition

network. A process flow description captures knowledge of "how things work" in an

organization, e.g., the description of what happens to a part as it flows through a

sequence of manufacturing processes (see Figure 3). The object state transition network

description summarizes the allowable transitions an object may undergo throughout a

particular process. Both Process Flow Description and Object State Transition

Description contain units of information that make up the system description. These

model entities, as they are called, form the basic units of an IDEF3 description. The

resulting diagrams and text comprise what is termed a "description" as opposed to the

focus of what is produced by the other IDEF methods whose product is a "model." [30]

Figure 3 an Example IDEF3 Process Description Diagram [30]

21

An IDEF3 Process Flow Description captures a description of a process and the

network of relations that exists between processes within the context of the overall

scenario in which they occur. The intent of this description is to show how things work in

a particular organization when viewed as being part of a particular problem solving or

recurring situation. The development of an IDEF3 Process Flow Description consists of

expressing facts collected from domain experts in terms of the basic descriptive building

blocks. [30]

Ptolemy II – A Polymorphic Design Environment

Ptolemy is a project dedicated to the modeling, simulation and design of real-

time, embedded applications that started in 1990 at University Of California at Berkeley.

The focus of Ptolemy is on component-based design. The philosophy of this project is

using different models of computation and developing an environment that allows the

mixing of these models of computation to create a heterogeneous application [33].

Ptolemy is a polymorphous modeling tool used for the simulation of embedded

applications. Figure 4 shows the design management strategy proposed by the Ptolemy

project. Design starts with application specification using different models of

computation and constraints. Different tasks of the system are evaluated and estimates are

drawn. These estimates decide the hardware and software partition of the application.

This is followed by hardware and software synthesis and verification. The final stage is

the integration and system wide simulation [31].

22

Figure 4 Design Methodology Management using Ptolemy [31]

A Java-based framework called Ptolemy II has been developed that implements

the project ideas. The framework has an environment for the simulation and prototyping

of heterogeneous systems. It is an object-oriented system allowing interaction between

diverse models of computation. The Ptolemy software is extensible and publicly

available. It allows experimentation with various models of computation, heterogeneous

designs and co-simulation. The primary feature of Ptolemy is the facility to compose

various models of computation. Some of the models of computation supported by

Ptolemy are hierarchical finite state machine, data flow graphs, discrete-event and

synchronous/reactive systems. After specifying the application using heterogeneous

models, the next step is to partition the application. This is done using different

partitioning algorithms like GCLP [32]. Ptolemy facilitates mixed mode system

23

simulation and synthesis. Software synthesis is supported for various models of

computation along with support for composing these models. Hardware portions of the

application are synthesized to VHDL. A register transfer level simulator (THOR) has also

been added for simulating hardware applications [33].

Other key features of the project are the representation of modern theories in a

block diagram specification, a modular approach, a mathematical framework for

comparison of models of computations, and simulation and scheduling of complex

heterogeneous systems [32].

Domain Specific Vs Domain Independent

Domain Specific Languages (DSLs) can increase productivity by bringing power

programming to domain users via familiar specialized notations and languages [97]. It is

well know that GPLs have been more prevalent and successful compared to DSLs, even

though claims about DSLs’ capabilities to increase productivity are widely accepted [37].

The primary reasons behind the limited success of DSLs have historically been the

following:

• DSLs are more expensive to create as the development cost and time is borne by a

small user community

• Since there is a small user base, tools and support for a DSL is not at par with GPLs

• The wide user base and longer life of GPLs helps make the language

implementations robust and reliable.

24

Textual and Graphical Languages

Another view of languages characterizes them as textual and graphical. Graphical

languages are usually impractical for general-purpose programming but can be useful in a

limited context, in specific domains. One of the most successful recent example of a

graphical domain-specific language is Matlab/Simulink [38] used for simulation and

control engineering. The notation can use both textual and graphical parts according to

the requirements of the target domain. For example, in the software development domain,

the UML [35] specification has both textual (Object Constraint Language) and graphical

(Use-Case Diagram, Class Diagram, etc.) notations. In hardware development domain,

tool vendors [39] are now providing a graphical notation for the structural description of

hardware even though the behavioral description is still textual.

For DSLs to become more popular the three hurdles mentioned above must be

addressed. A key limitation is the cost of development (in terms of time and effort). The

next Chapter is dedicated to various methods for automated generation of software.

Generative and Model Based Solutions

This section studies literature on various generative methods for software

development as well as model based solutions.

Compiler compilers such as LEX [40] and YACC [41] are representative of the

first breed of programs that were used for the automated implementation of programming

languages. Since then a lot of progress has been made in both automated generation tools

and the languages they develop. A few notable generative fields are Generative

Programming and Model Integrated Computing (MIC).

25

Generative Programming (GP)

Generative Programming (GP) is a software engineering paradigm based
on modeling software system families such that, given a particular
requirements specification, a highly customized and optimized
intermediate or end-product can be automatically manufactured on
demand from elementary, reusable implementation components by means
of configuration knowledge.

[42]

Generative programming focuses on the automation of assembly lines for

software product families. They elevate the engineering discipline from development of

single products to the development of product line for a family of products. The salient

features of generative programming are (1) means to specify family members, (2)

implementation components and (3) knowledge that maps the family member

specification to the finished product [42].

The process starts with the analysis of a domain. Commonalities and variabilities

within the domain are defined. Using the domain knowledge a common architecture of

the domain is designed and a production plan is formulated. Finally the architecture,

reusable components, domain-specific languages, generators and the production process

are implemented [42].

Generative programming can be implemented in various ways ranging from code

level methods such as generic programming, meta programming and aspect-oriented

programming to high-level methods such as domain-specific languages/generators and

intentional programming.

Generic programming is a term used when a program, module or component is

built such that it is configurable. Configurability can be achieved by (1) the use of

parameters and (2) programming using generic reusable abstract types and algorithms.

Meta programming can be viewed as a special case of generic programming where the

26

programs are written with a lot of built-in variability such that the variability can be

configured at different stages in the program lifecycle. Aspect-oriented programming is a

method of abstracting out various aspects of a program. For example, the security issues

of a program could be captured in a different aspect, making it easy to build systems with

or without security.

Domain-specific languages are different than the code based approaches as they

define a language based exclusively for the domain. The development of the

infrastructure usually required considerable effort. Intentional programming is a new

style of programming where the program is captured a set of intentions where intentions

are the building blocks of the language. Intentions are extensible and users are free to

write their own intentions.

Low-level methods can be used in the implementation of the platform and

reusable components but the assembly and deployment of products still require high level

methods.

The remainder of this section will discuss generator technologies such as Draco

and GenVoca.

Draco

Draco is a methodology that encourages the development of domain-specific

languages and tools for creating software. It was developed by James Neighbors at

University of California, Irvine in 1980 [43][44].

In Draco the development cycle starts with a Domain Analyst, a person who has

built many systems in a given domain. The Domain Analyst describes the variability of

the domain by defining a Domain Language for expressing systems in the domain. The

27

next step is to define a visualization technique that makes the domain language readable

to the user. This step is called Prettyprinter Generation. The next step is to specify

optimizations in the form of Source-to-Source Transformations [43][44].

After the domain language and the associated tools are developed the next phase

in the development process for the Domain Designer is to use the language and tools to

create components and build libraries of components. Components are described as a set

of refinements. The System Analyst then uses the language and libraries and extends the

libraries to describe the required system. After the system has been described, a System

Specialist uses the transformations in an interactive manner to convert the specification

into executable code [43][44].

Genvoca

GenVoca is a tool and methodology developed by Don Batory. The tool is based

upon step-wise refinement of domain-specific representation of the system. The next

generation of the tool suite called AHEAD (Algebraic Hierarchical Equations for

Application Design) [45] has been recently released.

The key theme is the composition of features to construct finished products.

Features are the reusable building blocks of the product family. Various layers of

abstraction of a product family are identified. A high-level layer then becomes a

parameter of its lower-level layer. Then components are defined that form families of

alternatives at each layer. Each product is a particular configuration within the family.

The primary challenges are identifying the layers and implementing the various

components. The layered approach helps build a progressive infrastructure from very

generic configurable components to highly customized domain-specific systems.

28

Summary

Generative programming techniques are well-suited for the automation of well

defined and tightly integrated product families. If the product family’s specifications

change drastically, then a lot of rework is required. Furthermore, support for design and

analysis of new systems or families of systems is lacking.

Model Integrated Computing (MIC)

MIC is a software and system development approach that advocates the use of

domain-specific models to represent relevant aspects of a system. The models capture

system design and are used to synthesize executable systems, perform analysis or “drive”

simulations. The advantage of this methodology is that it expedites the design process,

supports evolution, eases system maintenance and reduces costs [1].

The MIC development cycle (see Figure 5) starts with the formal specification of

a new application domain. The specification proceeds by identifying the domain

concepts, together with their attributes and inter-relationships through a process called

metamodeling [1]. Metamodeling is enacted through the creation of metamodels that

define the abstract syntax, static semantics and visualization rules of the domain. The

visualization rules determine how domain models are to be visualized and manipulated in

a visual modeling environment. Once the domain has been defined, the specification; i.e.

the metamodel of the domain is used to generate a Domain-Specific Design Environment

(DSDE) through the step called “Meta-Level Translation”. The DSDE can then be used

to create domain-specific designs/models; for example, a particular state machine is a

domain-specific design that conforms to the rules specified in the metamodel of the state

machine domain. The next step is to do something useful with the models such as to

29

synthesize executable code, perform analysis or drive simulators. This is achieved by

converting the models into another format such as executable code, input language of

analysis tools, or configuration files for simulators. This mapping of the models to

another useful form is called model transformation and is performed by model

transformers [1]. Model transformers (also called “model interpreters”) are programs that

convert models in a given domain into models of another domain. For instance, a source

model can be in the form of a synchronous dataflow network of signal processing

operations, while the target model can be in the form of Petri-nets, suitable for predicting

the performance of the network. Note that the result of the transformation can be

considered as a model that conforms to a different metamodel: the metamodel of the

target [1].

Figure 5 The MIC Development Cycle [1]

A Model Integrated Computing (MIC) implementation must have the following

features.

30

1. Meta framework tools that will be used to describe the syntax, semantics and

visualization of DSLs. The meta framework must provide support for the

specification of a language defined by its abstract syntax, concrete syntax, static

semantics, dynamic semantics, and visualization. The syntax of a programming

language describes the structure of programs without considering their meaning. The

abstract syntax of the language captures the abstract concepts used in the language

and their relationships. Issues such as type-compatibility are captured in the static

semantics of the language. Dynamic semantics are defined as the relation of the

abstract syntax to a model of computation. In other words, it can be considered as a

mapping from one language to another (provided the model of computation is

captured in a linguistic framework).

2. Language framework tools that will be used for the creation, visualization and

verification of sentences in a domain-specific language. The language framework

should allow the use of the language in an integrated development environment that

includes editing and visualizing instances of the language. The framework needs to

enforce the concrete syntax and static semantics of the language during instance

creation to provide maximum productivity. The final requirement of the framework

is to be able to use transformation tools that map sentences of the language into

sentences of some model of computation [8]. Examples of such models of

computation are stack machines, process networks, finite state machines, etc. Often,

although not always, sentences expressed in the target model of computation are

executable, hence they are called “executable models”.

31

MIC promotes a metamodel-based approach to system construction, which has

gained acceptance in recent years. The flagship research products following this approach

are: GME [14], Atom3 [15], DOME [16], Moses [17]. Each implementation has a

metamodeling layer that allows the specification of a domain-specific modeling

languages and a modeling layer that allows the creation and modification of domain

models.

The Domain Modeling Environment (DOME)

The Domain Modeling Environment (DOME) is a research project at Honeywell

Technology Center. DOME has a metamodeling language called “DOME Tool

Specification”. This is a proprietary language similar to entity relationship diagrams.

There are two main entities the user can specify, a node and a link. The node represents a

labeled node in the target language while a link represents a labeled directed edge in the

target language. Links can be associated with nodes representing a constraint restricting

the edge to be incident upon a particular kind of node. The language has inheritance;

nodes can inherit properties from other nodes. Link associations and compositions are all

described as attributes of nodes or other entities and the visualization does not show these

associations. Nodes and links can have attributes called “Properties”, these properties can

be typed.

Visualization specification is based on a set of basic shapes provided by the

environment. The set of basic shapes consists of geometric shapes like square, circle,

rectangle and a few others. The color of node and link types cannot be preset or chosen at

metamodeling time.

32

There is no support for the specification of static semantics. Thus rules based on

the value of attribute or based on particular pattern of objects cannot be specified in the

metamodeling language. However, the user can write functions to implement such

functionality that is triggered by GUI events.

There is no support for the specification of dynamic semantics. Dynamic

semantics is represented and implemented by means of code written in a programming

language called Alter.

Moses

Moses is a modeling, simulation, implementation and verification framework

funded by Swiss Federal Commission for Technology and Innovation (KTI) and

developed by the collaboration between Computer Engineering and Networks Lab, ETH

Zurich, Switzerland and ESEC S.A., Cham, Switzerland [46].

Moses has a textual metamodeling language called Graph Type Definition

Language (GTDL) [48]. The language is used to specify formalisms (modeling

language). GTDL allows the specification of abstract and concrete syntax of the

formalism. Vertex and Edge types can be defined in the language. Attributes can be

defined as a type-name pair. These attributes can then be associated with vertex and edge

types. Composition is represented by the parent graph type containing an attribute that of

the child type [48].

Visualization information of the object is also declared, such as shape, border

color, fill color, and dimensions [47]. Moses support for static semantic constraints or the

lack thereof is not clear from either the documentation or direct experimentation with the

tool [47]. Dynamic semantics are expressed in the form of Java code. They have a

33

simulation platform called Hades that can be extended to support specialized computation

for each modeling language [47]. Moses supports animation of models by providing an

extensible base animator class as part of the framework [47].

Atom3

Atom3 is a multi-paradigm modeling tool developed at Modeling, Simulation and

Design Lab (MSDL) in the School of Computer Science at McGill University, Canada.

Like other MIC implementations, it also supports metamodeling. The metamodeling

language used by Atom3 is Entity Relationship (ER) diagrams. ER diagrams are used to

specify the types of entities and their relations allowed in a particular modeling language.

Typed attributes can be associated with each entity/relationship type. There is no direct

support for composition or aggregation of entities or relations. The formalisms designed

using this approach can be considered as flat representations [49][50].

Static semantics can be specified in the form of either OCL expressions or Python

scripts which are associated with entities or relations. The user can also specify

constraints to be pre or post conditions of an editing event [49][50].

Dynamic semantics are represented using a graph grammar based transformation

specification. The specification is converted to a Python implementation [49][50].

Kent Modeling Framework

The Kent Modeling Framework (KMF) is under development at the Computing

Laboratory, University of Kent at Canterbury, England. KMF uses UML 1.3 and XMI 1.0

as the metamodeling language. UML class diagrams and constraints are fed to ToolGen

which in turn creates a set of Java files to implement the editor for the desired modeling

language. The generated Java file can then be compiled to generate a modeling language

34

specific GUI. The lack of proper documentation hindered the successful generation of a

modeling language [51].

MetaEdit+

MetaEdit+ is a professional tool developed by MetaCase, Finland, that allows the

specification and implementation of modeling languages. The metamodeling language is

based on a set of dialog boxes that allow the user to specify domain objects and their

relations. Properties can be associated with objects. Only flat modeling languages can be

built using these tools and hierarchy is not supported [52][53].

For visualization MetaEdit+ has visualization editor that allows the user to draw

the visual representation of the objects and to as specify the visualization of properties

[52][53].

Apart from defining the types of objects allowed in the modeling language

MetaEdit+ supports the definition and use of libraries of object types. These can then be

used by the domain modeler to assemble a custom language [52][53].

Generic Modeling Environment (GME)

The Generic Modeling Environment (GME) is the main component of the latest

generation of MIC technologies developed at the Institute for Software Integrated

Systems (ISIS), Vanderbilt University, USA. GME provides a framework for creating

domain-specific modeling environments [1]. An important distinguishing property of the

metamodeling environment of GME is that it is based on UML class diagrams [35] which

is an industry standard. UML class diagrams are used to capture the syntax, semantics

and visualization rules of the target domain. The meta-interpreter interprets the

metamodels and generates a configuration file for GME. This configuration file acts as a

35

meta-program for the (generic) GME editing engine, so that GME behaves like the

specialized modeling environment supporting the target domain. The core of GME is

used both as the metamodeling environment and the target environment; the

metamodeling language is just another domain-specific language that the common editing

engine supports.

GME has both a metamodeling environment as well as a metamodel transformer

that generates a new modeling environment from the metamodels. However, until

recently there was a lack of generic tools to automatically generate domain-specific

model transformers. Each model transformer was written by hand and was the most time

consuming and error-prone phase of the MIC approach. There was a need to develop

methods and tools to automate and thus, speed up the process of creating model

transformers.

The MIC approach described above has gained significant attention recently with

the advent of the Model Driven Architecture (MDA) by Object Management Group

(OMG) [2]. MIC can be considered as a particular manifestation of MDA, which is

tailored towards system construction via domain-specific modeling languages [6].

Comparison Of Features

Most MIC implementations support the specification and implementation of

syntax and visualization of domain-specific languages. However, support for static

semantics and dynamic semantics is not adequate. Dynamic semantics are usually

represented using a general purpose programming language. This makes the code

complex and difficult to maintain. Atom3 is the only system that provides a graph

36

grammar based transformation specification language. The language can be used for

simple transformations but is not suited for complex transformations.

Table 1: Comparison of Various MIC Tools

 DOME Moses Atom3 KMF MetaEdit GME

Metamodeling
language

Proprietary GTDL
(textual)

ER
Diagrams UML 1.3 Dialog box

based interface
Stereotyped

UML

Vertex Type Supported Supported Supported Supported Supported Supported
Edge Type Supported Supported Supported Supported Not Supported Supported

Attributes Dialog box Textual
Notation Dialog box XMI Dialog box

Attribute
objects

composed in
vertex

Composition Sub-diagram
attribute

Child, an
attribute of

parent

Not
supported XMI Supported UML

Composition

Aggregation Via Node
Attributes Using an edge As a relation XMI Not Supported

Class with
stereotype
<<Set>>

Inheritance Using
GenSpec Not supported Not

supported XMI Using ancestor
attribute

UML
inheritance

Reference Not
supported Not supported Not

supported
Not

supported Not supported
Class with
stereotype

<<Reference>>

Sy
nt

ax

Vertex
Set of

predefined
shapes

Graphical editor Graphical
editor ? Graphical editor

Bmp files or
specification

via code

Edge
Set of

predefined
line types

Set of
predefined line

types

Set of
predefined
line types

? ?
Set of

predefined line
types

Attributes
embedded in

the visual
vertex

notation

Textual
notation Dialog Box ?

embedded in
the visual

vertex notation

Predefined
menu and/or

programmable
via an API V

is
ua

liz
at

io
n

Specification Alter code Not Supported Not
Supported OCL Proprietary

Rule language OCL

Enforcement Alter
compiler Not Supported Not

Supported ? Proprietary OCL evaluator

Enforcement
method

? Not Supported Not
Supported ? ? Event driven St

at
ic

Se

m
an

tic
s

Specification
Notation

Textual Textual Graphical ? Textual Textual

Specification
Language

Alter code Java code Graph
Grammar ? Java C++

Implementati
on

Alter
compiler Java compiler Converted

to python ? Java complier C++ compiler D
yn

am
ic

Se

m
an

tic
s

37

Summary of Model-Based Solutions

This Chapter reviewed various techniques and associated tools used in the

automation of the development of a large number of software systems.

Generative Programming (GP) consists of a variety of techniques used for the

automated development of product families. GP techniques have the following features

(1) Capturing the commonalities and the variabilities in the product families, (2)

Development of a pool of components that can be reused within the family and possibly

across families and (3) A method for the specification of the assembly. The largest effort

in these techniques centers on the development of the reusable assets and is the most time

consuming step.

Model Integrated Computing (MIC) on the other hand has the philosophy of

developing domain-specific languages for each domain. Thus MIC tool suites comprise

tools that facilitate the development of languages. This consists of developing the abstract

syntax, concrete syntax, visualization, static semantics and dynamic semantics. The

success of the MIC approach depends on the cost incurred in the development of a new

language. Most implementations have good abstractions to capture the abstract syntax

and concrete syntax of the new language. However, static and dynamic semantics are

usually captured as large and often complex model interpreters. This is the bottleneck of

MIC and needs to be overcome in order to have a greater impact on the software

development community.

To enhance the development of translators that provide dynamic semantics we

need a way to precisely specify the operation of these translators on categories of models,

and to then generate code that would perform the translation. However, this task is non-

38

trivial as a model transformer can be required to work with two arbitrarily different

domains and perform fairly complex computations. Hence, the specification language

needs to be powerful enough to cover diverse needs and yet be simple and usable.

From a mathematical viewpoint, models in MIC are graphs, to be more precise:

vertex and edge labeled multi-graphs, where the labels denote the corresponding entities

(i.e. types) in the metamodel. Using graph theoretic results to solve this problem appears

to be a possible solution and will be discussed in details in the following section.

Graph Grammars And Transformations

Graph transformations and grammars have been an active topic of research for

well over 20 years. This research can be classified into two broad categories. The first

category, graph grammars, is an extension of textual grammars and it gave rise to node

replacement grammars [54][55] and hyperedge replacement grammars [59][60]. The

second category, graph transformations, researches various mathematical fields such as

category theory, set theory and algebra and extended it to graphs. The prominent works in

this area are double pushout [63], single pushout [64] and programmed structure

replacement systems [65]. The prominent graph transformation tools are AGG [69] and

PROGRES [68].

This section is organized into sub-sections where each sub-section covers a

particular class of graph grammars or transformation systems. The first sub-section

discusses node replacement grammars, followed by hyper-edge replacement grammars.

The next sub-section deals with algebraic approaches while the final sub-section

discusses programmed graph replacement systems.

39

Node Replacement Graph Grammars

Node replacement grammars [54][55] are a class of graph grammars that are

based primarily upon the replacement of nodes in a graph. The basic production of every

node replacement grammar has an LHS subgraph (called mother graph) that produces an

RHS subgraph (called daughter graph). Usually the LHS subgraph consists of only one

node. The nodes that appear in the LHS of a production are similar to non-terminals in

Chomsky’s Grammar. The production also has a gluing construct that defines how the

daughter graph will glue to the rest of the graph. Edges in this grammar formalism are

usually not considered to be first class objects, i.e. they are referred by means of the

nodes to which they connect. The gluing constructs distinguish one node replacement

grammar from another [54].

Node Label Controlled (NLC)

NLC is one of the first node replacement grammars that appeared in literature.

NLC is defined as 5-tuple [54].

),,,,(SCPG ∆Σ= Where

• - the entire alphabet set (all possible node labels) Σ

• - the alphabet set of terminals (node labels that do not appear on the LHS of any

production)

∆

• P - the set of productions

• C - the connection relationships (the gluing conditions)

• S - the start graph

40

Each production is defined as a non-terminal node producing a graph with

terminals and non-terminals along with a set of connection instructions. For example in

Figure 6 we see a production with X in the LHS and a subgraph on the RHS along with a

connection relation in the box. The semantics of the production is to first delete the LHS

from the graph; in this case X is deleted form the graph. Next, the RHS graph is added.

Then the connections between the input graph and the newly added daughter graph are

established. A connection relation is a pair of node labels of the form (l, m). If the LHS

node was adjacent to a node labeled ‘l’ then all nodes in the RHS with label ‘m’ will be

adjacent to the ‘l’ labeled node. For example, in Figure 6 the relation (c, a) implies that

each ‘a’ labeled node in the RHS will be adjacent to any ‘c’ labeled neighbor of X [54].

Figure 6 A NLC production

To make the production more clear let us see an example. In Figure 7 we see that

(a) is the starting graph. If we apply the production denoted in Figure 6, the first step is to

remove the LHS of the production, in this case X, then add the daughter graph. The result

is shown in (b). Next we add the edges between the daughter graph and rest of the graph

according to the gluing condition to produce the final graph shown in (c) [54].

41

 (a) (b) (c)

Figure 7 Application sequence of a production

In NLC, connections are made between node labels. Sometimes it is desirable to

refer to a particular node while specifying the gluing construct. This gives rise to a

variation where the connection relationship is of the form (u, x), where u is a node label

an x is a particular node in the daughter graph. This variation is called Neighborhood

Controlled Embedding (NCE) and is studied in greater depth in the next section [54].

Neighborhood Controlled Embedding (NCE)

The formal definition of NCE is as follows

),,,(SPG ∆Σ=

Where, are as defined for NLC and P is defined as a production of the form

P :- X (D,C) where X D is the production and C is the connection relationship of

the form (u, x) where, u is a node label and x is a particular node the daughter graph.

S,,∆Σ

NCE can be extended with direction on the edges. This gives rise to dNCE.

Adding labels to the edges and allowing the connection relationship to use edge labels

42

makes the grammar eNCE. If both of the above mentioned extensions are added then we

get edNCE which is the most popular node replacement grammar. The NCE production

for the previous example is shown in Figure 8. The production states that X should be

replaced by the daughter graph shown within the box. The connection relations state that

every ‘c‘ adjacent to X in the mother graph will be adjacent to the node ‘a’ in the

daughter and every ‘b’ adjacent to X in the mother graph will now be adjacent to both ‘b’

and ‘X’ in the daughter graph [54].

Figure 8 A NCE production

In an edNCE system the order of application of the production rules is

unspecified. Thus different application sequences may lead to different graphs [54].

For this reason a property called confluence [56] is defined. A NCE grammar is

said to be confluent if the output graph is the same irrespective of the sequence in which

the productions are applied. Such grammars are called C-NCE. Confluence is a very

interesting property as it guarantees the determinism of the productions. One possible

way of achieving confluence is to have “Boundary” restriction: if all the productions in a

NCE grammar do not have two non-terminals connected with an edge, and if this

43

property is preserved in the initial graph then, the grammar is guaranteed to be confluent.

Such grammars are called B-NLC. The boundary condition extends to edNCE grammar

as well [54].

The formal definition of edNCE is as follows:

ddirection and γlabeled edge with σ labaled
 node theoadjacent t be illdaughter w theof x node then β label edgean with σ labeled

 node a oadjacent t ismother theif that means which d)x,,/,(Cy readibilitfor
out}{in,VΓΓΣC ns.instructio connection ofset a is C

 andgraph a is D
 label, node terminal-non a is X

 whereC)(D,X
form theof isgrammar edNCE of productionA

λ and E,V as denoted are H of components The
function. labeling node theis ΣV :λ

and Γ}γw, vV,wv,|w)γ,{(v,E nodes, ofset finite a is V
 whereλ),E,(V, H tuplea as defined is Γ and over graph aThen

 labels. edge allofalphabet an Γandlabelsnodeallofset alphabet an be ΣLet

H

HHH

γβσ=
××××⊆

→

→
∈≠∈⊆

=Σ

Let }',,,,,{ σσbaYX=∑ and }',,,,',,',,',{ 21 δδγγγγββαα=Γ .

In NCE an important concept is that of composition of embeddings. It is defined

as follows: Let P1: X1 (H, CH) and P2: X2 (D, CD) be two productions where,

)},,'/,(),,,/,(),,,/,(),,,'/','(),,,/,{(21 outyainyYinyYinyoutyCD ααγβγβδγσδγσ=

and)},,/,(),,,/,{(outuinuCH γβσγβσ= . If H and D are disjoint graphs and the

substitution of v by (D, CD) in (H, CH) is denoted by (H, CH) [v/(D, CD)] embedding such

that the embedding has the following property.

44

}),,/,(,),,/,(:|),,/,{(}|),,/,{(
 if)()(and },{ if)()(

}),,/),((,),,(:|),,{(
 }),,/),((,),,(:|),,{(

},|),,{(
,}){(

HHH

DDHH

DHH

DHH

DH

DH

CdvCdvdxvxCdxC
VxxxvVxxx

CoutxwEwvwx
CinxwEvwxw

EvyvxEyxE
VvVV

∈∈Γ∈∃∪≠∈=
∈=−∈=

∈∈Γ∈∃∪
∈∈Γ∈∃∪

∪≠≠∈=
∪−=

δγσγβσγγβσδβσ
λλλλ

γβλββγ
γβλββγ

γ

The property establishes the requirements for confluence of the productions and is

used to develop variants of the NCE that are confluent. A confluent grammar is one

where the order of execution of the productions does not affect the outcome. Some

examples of confluent grammars are boundary NLC and linear edNCE.

The embedding semantics is shown in Figure 9 where the node in question (X) is

replaced by the entire graph (D, CD). Then all edges that X was associated with are

substituted according to the edge substitution CD.

(a) (H, CH) (b) (D, CD) (c) (H, CH)[v/(D, CD)]

Figure 9 Two graphs with embedding and the result of their substitution [54]

45

The above definition of embedding has been proven to be associative in [57], thus

. Another important property of composition of

productions is confluence which was proved in [58].

]]/[/[]/][/[DvHwKDvHwK =

Hyperedge Replacement Graph Grammars

Hyperedge replacement graph grammars [59][60] represents the next class of

grammars that was studied. The basic philosophy is to replace an edge/hyperedge with a

subgraph. For example in Figure 10 the edge e is to be replaced by the graph on the RHS.

begin

end

e
P

Figure 10 Hyperedge production

This production when applied to the graph in Figure 11(a) will remove the edge e

from graph (a) and insert the graph from Figure 10 to produce the graph in Figure 11(b).

begin end begin ende
H H [e/P]

 (a) (b)

Figure 11 An example to demonstrate the hyperedge production

In general the edge to be replaced can be a hyperedge having more than two ends.

Hyperedge replacement grammars have some interesting properties. The first is

46

sequentialization and parallelization, which states that the productions can be either

applied in a sequence or all at once. This property holds true because each production

works on a different edge and thus there can be no interference between them. The next

property is that of confluence and it states that the order of execution of the production

does not affect the result. Finally, associativity also holds true which states that if a

production P1 is applied and then another production P2 is applied to the result will yield

the same result as the case where P2 is applied first and P1 is applied on the result. These

properties are formally defined as follows:

]/]....[/][/e]/,....,/,/e

Then .hypergraph thebeHlet and ...,
distinct with hypergraph a be HLet

22112211

i21

nnnn

n

HeHeHH[HeHeHH[

Eeee H

=

∈
ation.Paralleliz and izationSequential

]/H][e/HH[e]/H][e/HH[e

Eee H

11222211

2121 Then s.hypergraph be H,Hlet and ,
distinct with hypergraph a be HLet

=

∈
.Confluence

]]/H[e/HH[e]/H][e/HH[e
Eee H

11222211

21 Then ,
 shypergraph be H2 H1, H,Let

=
∈

ity.Associativ

Many properties of hyperedge replacement grammars have been proven. A list of

the theorems is given below:

1. Context-freeness lemma; it states that hyperedge replacement grammars are context

free [59].

2. Fixed-point theorem; it states that hyperedge replacement grammars are the least

fixed points of their generating productions [61].

3. Pumping lemma generalization; it states that each hyperedge replacement language

can be decomposed into three hypergraphs FIRST, LINK and LAST such that all

47

sentences of the language can be constructed by a suitable composition of FIRST, k

samples of LINK and LAST for each natural number k [59].

4. Parikh’s theorem; the theorem was originally for context free languages and has

been extended to hyperedge replacement grammars. It states that for all hyperedge

replacement languages L and every Parikh mapping m, the set m(L) is semilinear

[62].

There are other interesting results based upon the kind of string languages

hyperedge replacement can generate and the kind of NP-complete graph languages

generated from them.

Algebraic Approach to Graph Transformation

The next approach to graph grammars is the algebraic approach [63][64]. The

idea was to generalize Chomsky grammars from strings to graphs. The main aim was to

come up with a generalization of string concatenation to a gluing construction of graphs.

The approach is algebraic because graphs are considered a special kind of algebra and the

gluing is defined by algebraic constrictions called pushouts. The pushout approach has

been taken from a more general field of category theory and has been applied to the more

specific field of algebraic theory of graph grammars. There are two basic algebraic

approaches, (a) Double PushOut (DPO) [63] and (b) Single PushOut (SPO) [64] These

approaches will be covered in their respective subsections.

To define an algebraic approach to graph grammars, first graphs have to be

defined, then graph isomorphism and finally graph replacements have to be defined.

A graph is defined as two sorted algebras where the set of vertices V and the set

of edges E are the carriers, and unary operations such as source s: E V and destination

48

d: E V define a relation between vertices and edges. There are labeling functions lv:

V LV and le: E LE, where LV and LE are the node and edge alphabet set.

A production defines a partial correspondence between each element of

its left and right hand side determining which nodes will be preserved, deleted or created.

The first step of applying a production is to match the LHS of the production in the host

graph. A match m: L G is a graph homomorphism mapping nodes and edges of L to G,

preserving the graph structure. Once a match is found for L in the LHR of a production,

the next step is to remove from G all nodes and edges that have no correspondence in the

RHS. Similarly those nodes and edges in R and not in L are added to G [54].

RLP →:

Double Pushout (DPO)

The basic approach in double pushout is to start with a subgraph to match in the

input graph. Then an inverse gluing condition is applied followed by a gluing. Put

simply, two graphs are drawn. The production is represented as P => L K R. After

the subgraph L is matched in the host graph the first step is to remove parts of the

matched graph that correspond to the elements in L and not in K. L is the inverse gluing

condition and specifies what to delete from the graph. Next portions that are in R and not

in K are added to the graph. This is the gluing condition. For example in Figure 12 we see

that if we have a client (c) performing a job, it can stop the job, raise a request and then

start performing the job again. In DPO we would say that when we find a client with a

job, the production would first remove the job and then add a request and a job.

49

Figure 12 DPO production

In the algebraic approaches, concepts such as parallel application of productions

have been defined. Parallelism in this approach can be defined in two ways: (1) based on

the sequential processor model and is defined as a set of productions where the order of

application doesn’t affect the result. (2) a truly parallel definition where the productions

are applied in parallel using one processor per production. The first approach is called

sequential independence while the second is explicit parallelism. Two productions are

said to be sequentially independent if they are not causally dependent and two

productions are parallel if they are mutually exclusive.

For explicit parallelism there is a need to define means that will facilitate the truly

parallel application of the productions. Two approaches have been suggested. The first

approach is called amalgamation, which specifies that if there are two productions P1 and

P2 then the amalgamated production 21 0 PP p⊕ should be present such that the

production P1 and P2 can be applied in parallel and the amalgamated production P0 that

represents the common parts of both the productions should be applied once. The control

of application of productions has also been studied. Productions can be arranged into

sequential and parallel flow.

50

There is another approach to parallelism in which the graph G is broken down

into two parts and distributed to different processors 21 0
GG G⊕ and then the common

part G0 is used to put them together.

Single Pushout (SPO)

SPO specifies only one pushout that performs both the addition and deletion of

nodes and edges. This causes ambiguity when two pattern nodes are mapped to the same

node in the host graph and one pattern node is preserved in the pushout while the other is

not. In SPO higher precedence is given to the deletion and thus in such cases the node

will be deleted as shown in Figure 13.

Figure 13 SPO production and example

Programmed Graph Rewriting Systems

The last section in this Chapter is on programmed rewriting systems [65]. These

represent the set of practical rewriting systems and have more working implementations

than theorems. The pioneers in this field are the developers of PROgrammed GRaph

REplacement System (PROGRES [68]).

51

This section is broken down into three sub-sections. The first discusses graph

replacement systems. The second deals with programmed graph replacement systems and

how to apply control flow mechanisms to the graph replacement system. The third sub-

section discusses PROGRES’s approach to programmed graph rewriting.

Logic-Based Structure Replacement System

This section [65] critiques graph replacement system and points out their

deficiencies. The problems with algebraic and other such graph replacement systems in

practice are the following:

1. A lack of static integrity constraints on graphs

2. Specification of derived attributes and relations

3. The implicit use of depth first search and backtracking.

These lead to the development of PROGRES that addresses the problems stated

above. PROGRES uses structure replacement as its mathematical model to define graph

replacements. Graphs are defined as structures with certain properties. In order to provide

integrity constraints, a signature is defined

A signature is defined as a 5-tuple

purposetion quantificafor used variableslogcal ofalphabet an is
objects of sets ngrepresenti constants ofalphabet special a is

constants identifierobject ofalphabet special a is
symbols predicate ofalphabet an is

symbolsfunction ofalphabet an is
 where),,,,(:

χ
ω
ν

χων

P

F

PF A

Α
Α

Α=Σ

In structure replacement systems, graph semantics have to be defined. Below is

the definition of a class of graphs that show people, their income and relationship to other

people

52

,...},x{xχ:
dren,...}en,HisChil{HerChildrω:

lue,...}{He,She,Vaν:
,...},attr,type{node,edge:Α

},...,,ncome,n,person,ian,wife,ma{child,wom:Α

P

F

21

0int

=
=
=
=

+=

AF defines symbols for node labels, edge labels, attribute types, attribute values

and evaluation functions.

AP consists of four predicate symbols that define this structure to be a graph

• Node(x,l): graph contains a node x with label l

• Edge(x,e,y): graph contains edge, labeled ‘e’ that is incident on x and y

• Attr(x,a,v): attribute a at node x has value v

• Type(v,t): attribute v has type t

V is a set of arbitrarily chosen constant names that are used to refer to single

objects in the graph while W is a set of names used to refer to a set of objects matched in

the graph. X is a set of names used for quantification purposes.

A structure is defined as a set of formulas. For example a structure of the person

database can be F:={node(Adam, man), node(Eve, woman), node(Sally, woman),… ,

attr(Adam, income, 5000), attr(Eve, income, 10000), …., edge(Adam, wife, Eve),

edge(Eve, child, Sally), . }

A schema defines all the possible structures that are legal. It is defined as a set of

implications and equivalences. For example,

53

....}.
)),,((),,(:(),(:,{

....}
,),,(),,(:,,

),,(),(),,(:,
),,(),(:

),,(),(:{
),...},(:),,(:,,

),,(),(:,),,(:,,{:

yzancestoryzxchildzedgezyxancestoryx

zyzwifexedgeywifexedgezyx
womanynodemanxnodeywifexedgeyx

personxnodewomanxnodex
personxnodemanxnodex

lxnodelvaxattrvax
ylyndexlxnodeylxlyexedgeyex

∨=∧∃↔∀∪

=→∧∀
∧→∀

→∀
→∀∪

∃→∀
∧∃→∀=Φ

A Structure replacement rule is defined as a quadruple

structures all ofset theis)(where)(RL,
conditions negative all ofset theis)F(where)(,

),,,(:

ΣΣ∈
ΣΣ∈

=

λλ
FARAL

ARRLALp

For the example in Figure 14 the content of these sets is:

{}
)},,(),,,(

)),(Re,,(),,,({
)},,({\:

)},(),,(
,

),,,(:),,,(:),,({:
)},,(),,,(

),,,(),,,(
),,(),,({:

=

+∪
=

<
¬∃¬∃¬=

=

AR
nHisChildrechildSheedgenHerCHildrechildHeedge

ValueductiontaxValueincomeSheattrShewifeHeedge
ValueincomeSheattrLR

personnHerChildrenodepersonnHisChildrenode
HerValueHisValue

ShewifexedgexxwifeHeedgexHeShebrotherAL
nHerCHildrechildSheedgenHisChildrechildHeedge

HerValueincomeSheattrHisValueincomeHeattr
womanShenodemanHenodeL

In simple words, a replacement production consists of a LHS subgraph, a RHS

subgraph, a guard and attribute mapping constructs. The subgraphs have concepts such as

negative edges, sets of nodes, optional nodes and edges.

54

Figure 14 A production in the PROGRES system

The example production in Figure 14 demonstrates most of the language features.

The production specifies a pattern containing a man and woman vertex such that they are

not brother/sister and are not married. The RHS of the production create an edge called

wife from woman to man. In the production, brother is a negative edge in the LHS. The

children nodes are dashed which means they are optional and the matcher should match

0..* children for the given parent and thus showing the optional feature and the feature to

match a set of nodes. The RHS of the rule specifies that a wife edge should be added and

child edges should be added to the matched pattern. Apart from the LHS and RHS, there

are constraints, which should evaluate to true for the rule fire. PROGRES also has a

language to specify attribute mapping of the patterns.

Programmed Structure Replacement Systems

This section deals with the organization of the rules. In traditional graph

grammars the execution semantics for rule execution is defined based on the availability

55

of the LHS in the graph. Other approaches deal with issues such as production priority

and regular expressions to specify rule fire sequences and control flow graphs. The author

identified some desirable characteristics of the control flow. They are:

1. Boolean nature: Application of a transformation should result in either success or

failure.

2. Atomic character: A sequence of replacement steps should modify the graph if and

only if all of its intermediate steps succeed.

3. Consistency preserving: The replacements have to preserve the consistency as

specified by separately defined integrity constraints.

4. Nondeterministic behavior: A single rule replaces any match of its LHS.

5. Recursive definition: Transformations should be allowed to call other

transformations without restrictions.

To fulfill these criteria PROGRES uses operators defined by Dijkstra in [66] and

extended by Nelson in [67] to produce a formal language that can be verified using

proofs. The constructs used are:

• Skip – Always returns true and relates a given graph to itself.

• Loop – will either loop forever or crash.

• Def(a) – an action that succeeds if a returns true.

• Undef(a) – an action that succeeds if a returns false.

• (a ; b) – a sequential execution of a followed by b.

• (a | b) – a nondeterministic choice between a and b.

• (a & b) – returns the intersection of results of a and b.

56

Summary of Graph Grammars and Transformations

This section discussed the various graph grammars and transformations

approaches published in literature. These include node replacement grammars, hyperedge

replacement grammars, algebraic approaches, and programmed graph replacement

systems.

Graph grammar techniques such as node replacement and hyperedge replacement

grammars are direct extensions of textual grammars and are well suited for the

specification and recognition of graphical languages. In textual languages, grammar is

used primarily for parsing raw textual streams into tree data structures. Unlike textual

languages, graphical languages are built with a database/data-structure backend and do

not require a parsing phase. Grammars have the ‘execute when LHS sub graph found’

semantics: whenever a pattern is found in the host graph the particular rule in question

will fire. This brings about two different issues. The first is that of confluence: the effect

of the execution of the rules in different orders and the second is efficiency. Sub-graph

isomorphism is an NP complete problem and thus the time complexity of the

implementations is also a concern.

Graph transformations take a different approach than that of grammars. Here the

focus is on the transformation of a graph, including addition/deletion and modification of

the graph. Algebraic approaches such as single and double pushout are transformation

methods. They define transformations as algebraic constructs and take care of confluence

by the use of sequencing of rules. However, the sequencing constructs are primitive and

not adequate for specifying complex transformations. These transformation languages do

not provide traversal strategies. The most mature of the transformation systems is the

57

Programmed Structure Replacement System (PSRS) which uses the structure

replacement as the basis of the transformation. On top of the transformation there is a

high-level control flow language for the explicit sequencing of rules. PSRS also has a few

drawbacks as a language for model-to-model transformation. This language was

developed to perform manipulations on databases and can only perform graph

manipulations within the same domain.

Graph Transformation Based Tools

The theory described above has given rise to many tools. Prominent amongst

these tools are PROGRES [68], AGG [71], DiaGen [82], GenGEd [83], VIATRA [84].

Out of these tools PROGRES, AGG and VIATRA support general purpose graph

transformation languages while DiaGen and GenGEd are visual language environments.

PROGRES

Programmed Graph Replacement System (PROGRES) is a tool developed at

Lehrstuhl für Informatik III, University of Technology Aachen (RWTH Aachen),

Germany.

PROGRES consist of an editor for the specification of the graph domain. The

domain/type system is defined using a proprietary textual language called Schema.

Schema has advanced type concepts such as inheritance, composition, implicit and

explicit attributes [65][68].

Transformations are specified in Programmed Structure Replacement, a language

with control flow semantics on top of the graph transformation. Graph transformations

58

are specified using a graphical editor and can be embedded in the textual control flow of

the transformation [65][68].

AGG

The domain tools of AGG consist of a graphical editor for the specification of

type graphs. Type graphs are the language used to specify the type system for the

domain. Users can create node and edge types and specify the type requirement for the

source and destination of the edges. The type system is simplistic and lacks concepts such

as composition and inheritance. The type system does not have support for semantic

constraints, that are based on attributes. Furthermore, a project can have only one type

graph. Type checking based on the type system can be enabled and/or disabled very

easily. There is limited support for the specification of the visualization features of

vertices and edges [69][70][71].

The graph tools of AGG consist of a graphical editor for the specification of the

graphs. Graphs can be created using types defined in the type graph. Alternatively, the

user can disable the type graph and define node/edge types while creating the host graph

[71].

The transformation tools include a visual transformation specification editor and a

transformation engine that can perform the transformation. The transformation language

used is single pushout. The visual editor allows the users to create and execute the rules.

Additionally, a Java API is also provided that can be used to perform the transformation.

A proprietary XML format called ggx is used to store graphs, transformation rules and

the type graph [71].

59

Comparison of Features

A set of requirements was created and it was used as the basis of comparison. The

feature set chosen for the comparison is divided into three groups. (1) Domain

Specification: A set of features required to describe and enforce the graph domain. (2)

Graph Specification: A set of features required to specify graphs in each tool and (3)

Transformation Specification: A set of features required to specify and execute the

transformations.

Table 2: Comparison of Graph Transformation Tools

 AGG PROGRES ATOM3

Language Type graph Schema ER-diagrams
Notation Graphical Textual Graphical
Inheritance ----- Supported Not supported
Attribute Types Supported Supported Supported
Constraints Not Supported Not Supported Not supported
Multiple domains Not Supported Not Supported Supported

D
om

ai
n

Sp
ec

ifi
ca

tio
n

Format Ggx format GRASS database
Editing method Graphical Database manipulation Graphical
Composition Not supported Not supported Not supported
Domain
enforcement

Optional By the database By visual editor G
ra

ph

Sp
ec

ifi
ca

tio
n

Language Single Pushout Programmed Structure

Replacement System Graph Grammar

Notation Graphical Textual & graphical Dialog based Graphical

Pattern
Specification

Single cardinality Single Cardinality Single Cardinality

Between Domains Not Supported Not Supported ??

T
ra

ns
fo

rm
at

io
n

Sp
ec

ifi
ca

tio
n

Critique of Graph Transformation Tools

Graph grammar techniques such as node replacement grammars, hyperedge

replacement grammars, and algebraic approaches such as the ones used in AGG do not

provide sufficiently expressive mechanisms for controlling the application of

60

transformation rules. PROGRES has a rich set of control mechanisms; however, they

only perform transformations within the same schema. Schema [68] in PROGRES and

type graphs [71] in AGG can be considered as a graph grammar that specifies a family of

allowed graphs. If semantics is assumed for the types in these schemas/type graphs then

they considered as the specification for a domain. These specifications capture structural

and integrity constraints that the graphs must conform to. In both PROGRES and AGG

the transformations can only be written such that the graph conforms to a single domain

specification. That is, the graph must at all times conform to the singleton schema/type

graph. Transformations that convert a graph belonging to one schema/type graph to

another one conforming to a different schema/type graph are not possible in these

systems.

In MIC, a domain is represented by a metamodel, and the model transformations

typically transform models/graphs that conform to one metamodel to models/graphs that

conform to a completely different metamodel. For example, a model transformer may be

required to convert models/graphs belonging to the “state machine” domain to

models/graphs conforming to the “flow chart” domain. The graph transformation system

must provide support for these transformations across heterogeneous domains. There is

yet another problem: maintaining references between the different models/graphs. During

the transformations it is usually required to link graph objects belonging to different

domains.

To illustrate the point let us consider a very simple transformation that needs to

transform models conforming to one domain to another. For sake of simplicity let the

source domain have one vertex type V1 and one edge type E1. Similarly, the target

61

domain has one vertex type V2 and one edge type E2. The transformation’s aim is to

create a vertex in the target for each vertex in the source and an edge in the target

corresponding to each edge in the source such that:

2212,2211 11 VvVvEeEe ∈∃⇒∈∀∈∃⇒∈∀ Relation 1

A simple algorithm could first create a target vertex for each source vertex and

then create the edges. To create a target edge e2 that corresponds to the source edge e1

we need to find the vertices in the target that correspond to the source vertices e1 is

incident upon. This information needs to be saved in the first phase of the transformation

for use in the second phase, and can be considered as maintaining a reference between

two graphs. There are other examples where referencing is not that easy, for example, a

transformation that determines the cross product of two sets of vertices to generate a new

set of vertices. In this case each pair of source vertices should reference a single target

vertex. A method is required to specify and use this information.

The existing graph grammars and transformations are based on powerful

mathematical concepts but not well suited for the specification and implementation of

model transformers as described. Hence, a new approach that targets the specific needs of

model-to-model transformation is required.

62

CHAPTER III

RESEARCH PROBLEM, HYPOTHESIS AND METHODS

Model Integrated Computing (MIC) [1] advocates the use of domain-specific

concepts to represent system design. Domain-specific models are then used to synthesize

executable systems, perform analysis or drive simulations. Using domain concepts to

represent system design helps increase productivity, makes systems easier to maintain

and evolves and shortens the development cycle [1].

Object Management Group (OMG) has proposed the use of models as a complete

specification of software artifacts. In their recent initiative called Model Driven

Architecture (MDA) [2] the aim is to allow developer to model software without thinking

about its implementation platform. Such a model is called a Platform Independent Model

(PIM). A PIM can then be transformed into a Platform Specific Model (PSM) for a

platform with the help of automated generators. The language proposed for the

specification of such PIMs and PSMs is UML 2.0.

MIC can be considered as a methodology for Domain Specific MDA (DSMDA)

where the focus is on developing the MDA process for specific domains. An

implementation of DSMDA should consist of a Domain Specific Modeling Environment

that allows users to describe systems using domain concepts. This environment is then

used to develop Domain Specific Platform Independent Models (DSPIMs). These models

represent the behavior and structure of the system with no implementation details. Such

models then need to be converted to a Domain Specific Platform Specific Models

(DSPSM). DSPSM could either be based on the use of domain-specific libraries and

63

frameworks or not have any domain-specific information. It is a term that covers all

possible platform based models.

Domain Specific MDA however, has its own problems such as high development

cost, lack of standardization, and lack of vendor support [6]. These problems can be

tackled by developing a framework to support the creation and use of Domain Specific

Modeling Environments (DSME). The cost of the framework is distributed over all the

projects built using it. Recurring needs can be factored out and implemented once in the

framework. The framework can also help in the standardization of DSME specifications,

thus providing a common vocabulary and standards based interfaces for vendors.

There are a set of minimal requirements that such a framework must fulfill. In

order to reduce the time required for the development of DSMEs, the framework must

provide tools to speedup each aspect of DSME creation. In Chapter III the section on

Model Integrated Computing (MIC) lists a set of basic features the framework should

support.

Tools such as GME [14], Atom3 [15], DOME [16] and Moses [17] already

provide a major portion of the framework support. Among these tools GME supports the

greatest number of features (see Table 1). Currently however, dynamic semantics are

specified and implemented using code. DSME developers spend a significant amount of

time and energy in writing code that implements the transformation from Domain

Specific Platform Independent Model (DSPIM) to Domain Specific Platform Specific

Model (DSPSM).

For a framework to be successful, it should significantly lower the time required

to specify and implement DSMDAs. This includes the specification and implementation

64

of the dynamic semantics. A high-level specification language is required for the

specification of model transformers. An execution framework can then be used to execute

such specifications. Currently, the specification and implementation of the dynamic

semantics of domain-specific languages requires significant effort and is the bottleneck in

the MIC process.

To speed up the development of DSMDAs a formal methodical approach needs to

be developed for the specification and automatic implementation of model transformers.

Design of such a language is non-trivial as a model transformer can work with arbitrarily

different domains and can perform fairly complex computations. The specification

language needs to be powerful enough to cover diverse needs and yet be simple and

usable.

When observed from a mathematical viewpoint, models in MIC are graphs, more

precisely they are typed, attributed multi-graphs. Thus, the model transformation problem

can be converted into a graph transformation problem. We can use the mathematical

concepts of graph transformations [54] to formally specify the intended behavior of a

model interpreter.

In Chapter II we saw that graph grammars and graph transformations have been

recognized as a powerful technique for specifying complex transformations that can be

used in various situations in a software development process [74][75][76][77]. Many

tasks in software development can be formulated using this approach including weaving

of aspect-oriented programs, [78] application of design patterns [76], and the

transformation of platform-independent models into platform specific models [6].

65

Graph grammars have been developed mostly for the specification and

recognition of graph languages while graph transformations have been developed with

the intention of manipulating the source graph into the target graph. For model

transformations however, graph rewriting, i.e. when a source graph is traversed to

produce a second disconnected graph is required along with transformations. One of the

primary differences between transformation and rewriting is that in transformation the

input and the output graph both belong to the same family of graphs while in a rewriting

these graphs could belong to different families. These graph families are specified with

the help of different constructs. For example, PROGRES uses a language called Schema

for specifying the graph family while AGG use the notion of type graphs. A family of

graphs forms a domain that specifies the set of all allowable graphs a

transformation/rewriting can handle. In a rewriting the domain of the input graph may be

different from the domain of the output graph. In summary, the following features are

required in the transformation language:

1. The transformation language should have a sub-language for the specification of

graph domains.

2. The domain specification language should use a well know language or be based on

one.

3. The transformation should use the type information from the domains to strongly

type the transformations

4. Often rewriting graphs belonging to one domain into graphs that belong to another

domain is required.

a. The language should support the specification of multiple domains.

66

b. It should have constructs that allow users to write rewritings where the

input and output graphs are disjoint and do not even belong to the same

domain.

5. The computational power of the transformation language should be comparable to a

Turing machine to ensure that any transformation conceivable can be handled by it.

6. The language should be capable of transforming/rewriting any number of

graph/domain pairs, not just two. There could be n input graphs and m output graphs

and these graphs can belong to any number of domains.

7. The language focus should be on constructs that allow users to write efficient

transformations.

8. The language should have efficient implementations of its programming constructs.

The implementation should be comparable to its equivalent hand written code.

9. The language should have a formal mathematical foundation that can facilitate the

formal verification of transformations by theorem proving or other formal

techniques.

Research Hypothesis

“A Metamodel based transformation language using graph rewriting and

transformations that support multiple graphs (that may belong to different domains) with

an efficient implementation is suitable for the specification of model transformers. Such a

language should help shorten the time taken to develop model transformers and allow for

formal proof of correctness of the transformations.”

67

Research Methods

The aim of the dissertation is to define a language for model-to-model

transformations based on graph grammar and transformations techniques. The language

development is based on identifying requirements of model transformations and then

researching how these needs can be fulfilled by simple and formal constructs.

Requirements were gathered by looking at various target applications and by creating a

list of challenge problems. Two challenge problems were been chosen:

1. Generate a non-hierarchical Finite State Machine (FSM) [9] from a Hierarchical

Concurrent State Machine (HCSM) representation similar to Statecharts [21]. This

problem introduces interesting challenges. To map concurrent state machines to a

single machine there is a need for complex operations that include computing the

Cartesian product of the parallel state space. Evaluation of this particular

transformation requires a depth-first bottom-up approach and will test whether the

system can allow different traversal schemes.

2. Generate from a given Simulink/Stateflow model the equivalent Hybrid Automata

[99]. This is another non-trivial example as the mapping is not a straightforward one-

to-one mapping. It is not even obvious if the problem can be solved in the most

general case. The algorithm used to solve this problem converts a restricted

Simulink-Stateflow model to its equivalent hybrid system. This algorithm has some

interesting steps such as state splitting, reachability analysis and special graph walks

that make it a challenging problem to solve.

The complexity of the example problems gives confidence that if solutions to

these problems can be specified in the new language and efficient code can be generated

68

from such a specification then the language will be expressive enough to be used to solve

a large number of non-trivial real world problems.

The next step is to develop language constructs that can solve these challenge

problems. Development of language constructs includes its syntax, visualization,

semantics and algorithms for its execution. These language constructs should then be

evaluated on the basis of expressiveness, generality and efficiency. A few candidate

constructs will then be implemented in the execution engine to further evaluate them.

A large part of this research effort focused on the execution framework for the

language. Initially a working, non-optimized framework was used to test the language

constructs. The framework was made flexible to try out different constructs and

algorithms. It was then used to test different algorithms and the execution of language

constructs.

Completion Criteria

The completion criteria were that the developed language and execution

framework should meet the requirements specified in this Chapter and it should be able to

successfully solve the challenge problems. Two criteria were developed to measure the

success of the language.

The first criterion was the expressiveness of the language. It should have all the

language constructs required to specify the challenge problems and the implementation of

the languages should be able to provide working solutions to them. This criterion is

aimed to measure the ability of the language to express solutions to complex problems.

Measures such as Turing completeness can be used to prove the computational power of

the language.

69

The second is the usefulness of the language for solving model-to-model

transformation problems. This can be argued by demonstrating language constructs in the

new languages and how they may be better than the traditional approaches. User

feedback can also be used to validate the theoretic claims. Measures such as the time

taken to solve a problem in the new language verses hand code can also be used to further

strengthen the case.

70

CHAPTER IV

GREAT: A MODEL-TO-MODEL TRANSFORMATION LANGUAGE

To address the requirements laid out in the dissertation proposal and to validate

the research hypothesis a model-to-model transformation language was developed. The

language is called Graph Rewriting And Transformation (GReAT). This language has

four distinct parts:

 Heterogeneous Transformations.

 Pattern Specification language.

 Graph transformation language.

 Control flow language.

Heterogeneous Graph Transformations

Many approaches have been introduced in the field of graph grammars and

transformations to capture graph domains. For instance, schemas are used in PROGRES

[68] while AGG [69] uses type graphs. These approaches are specific to the particular

systems and each have some features that others cannot replicate. Standards like UML

are widely used in the software community today, are well understood and are able to

express a super set of the constructs allowed in the other langauges. For these reasons we

have chosen to follow the UML route. It was also a pragmatic decision, as UML was

used in the tools that were used for developing the language.

71

Figure 15 Metamodel of hierarchical concurrent state machine using UML class diagrams.

In model-to-model transformations the input and output graphs are object

networks whose “schema” can be represented using UML class diagrams and expressions

in the Object Constraint Language (OCL) [87]. UML provides a rich language to specify

structural constraints while OCL can be used to specify non-structural, semantic

constraints. Thus, a UML class diagram plays the role of the graph grammar as it can

describe all the “legal” object networks that can be constructed within the domain.

Finally, UML can also be used to generate an object-oriented API that can be used to

traverse the input graph and to generate the output graph. GReAT allows the user to

specify any number of domains that can be used for the transformation. Figure 15 shows

a UML class diagram that represents the domain of Hierarchical Concurrent State

Machines (HCSM) and Figure 16 shows the metamodel of a Finite State Machine (FSM).

72

Figure 16 Metamodel of a simple finite state machine

There is yet another problem that is maintaining references between the different

models/graphs. During the transformations it is usually required to link graph objects

belonging to different domains.

To illustrate the point let us consider a very simple transformation that needs to

transform models conforming to one domain to another. For sake of simplicity we

consider that the source domain has only one type on vertices V1 and only one type of

edges E1 and that the target domain has again only one type of vertices V2 and only one

type of edges E2. The transformation’s aim is to create a vertex and edge in the target set

for each vertex and edge in the source set:

2212,2211 11 VvVvEeEe ∈∃⇒∈∀∈∃⇒∈∀ Relation 2

(where means “precisely one”). A simple algorithm could first create a target

vertex for each source vertex and then create the edges. To create a target edge e2 that

corresponds to source edge e1 we need to find the vertices in the target that correspond to

the two source vertices e1 is incident with. This information needs to be saved in the first

phase of the transformation for use in the second phase, and can be considered as

maintaining reference between two graphs. There are other examples where the

referencing is not that easy, for example, in a transformation that determines the cross

product of two sets of vertices to generate a new set of vertices. In this case each pair of

source vertices should reference a single target vertex.

1∃

73

This problem was tackled in GReAT by using an additional domain to represent

all the cross-domain links. Apart from using UML to specify all the different domains

that will be used for the transformation, UML is also used to specify a temporary domain

that contains the information of all the types of cross-links the transformation needs. For

example, Figure 17 shows a metamodel that defines associations/edges between HCSM

and FSM. The State and Transition are classes from Figure 15 while the FiniteState and

FiniteTransition are classes from Figure 16. This metamodel defines three types of edges.

There is a refersTo edge type that can exist between State and FiniteState and between

Transition and FiniteTransition. Another edge type associatedWith is defined and it can

exist between State objects.

Figure 17 A metamodel that introduces cross-links

Cross-links can be defined not only between different domains but can also be

used to extend a domain to provide some extra functionality required by the

transformation. By using a separate domain to specify the cross-links we are able to tie

the different domains together to make a larger, heterogeneous domain that encompasses

all the domains and cross-references. This also helps us to have the same representation

for cross-links and for domain edges.

74

Definitions

Before describing GReAT, some initial definitions are presented in this section.

Graphs used in the GReAT language are typed and attributed multi-graphs and are

defined below.

Vertex: A vertex V is a pair: (class, attrs), where class is a UML class, and attrs is

a map that maps each defined attribute of the class into a value.

Edge: An edge E is a 3-tuple (etype, src, dst), where etype is the association the

edge belongs to. In UML, simple associations are distinguished by their endpoint classes.

This information can be considered as an “edge type”. The association classes in UML

can also be distinguished using two edges: one from the source class to the association

class and another one from the association class to the destination class. Src and dst are

the vertices that the edge is incident upon. The class of these vertices must be identical to

the endpoint classes of etype.

Graph: A graph G is pair (GV, GE), Where GV is a set of vertices in the graph

and GE is the set of edges and GVdstGVsrcGEdstsrcetypee ∈∧∈∈=∀ ,),,(.

Match: A match M is a pair (MVB, MEB), where MVB is a set of vertex

bindings and MEB is a set of edge bindings. Vertex binding is defined as a pair (PV,

HV), where PV is a pattern vertex and HV is a host graph vertex. Similarly, edge binding

is a pair (PE, HE), where PE is a pattern edge and HE is a host edge. The match must

satisfy the following property.

),(),(

),,(),,,(),,(
 where,

hdstpdstVBDhsrcpsrcVBS
MVBVBDMVBVBS

hdsthsrchethepdstpsrcpetpehepeEB
MEBEB

=∧=
∈∧∈∃

===
∈∀

Q

75

The match does not have any restriction that specifies that each pattern object

must have a binding. This is intentional, as the match is also used to specify partial

matching of pattern graphs. The default behavior of the pattern matcher is to have a

unique match for every pattern vertex however there are cases when this is not desirable.

The Pattern Specification Language

A full graph transformation language is built upon a graph pattern specification

language and pattern matching. Graph patterns allow selecting portions of the input (host)

graph, and thus specify the scope of individual transformation steps. The specification

techniques found in graph grammars and transformation languages

[54][65][69][70][78][79][80][81] were not sufficient for our purposes, as they did not

follow UML concepts. This section introduces an expressive yet easy to use pattern

specification language that is closely related to UML class diagrams.

Recall that the goal of the pattern language is to specify patterns over graphs (of

objects and links), where the vertices and edges belong to specific classes and

associations. In this language we will rely on the assumption that a UML class diagram is

available for the objects. The UML class diagram can be considered as the “graph

grammar,” which specifies all legal constructs formed over the objects that are instances

of classes introduced in the class diagram.

Simple Patterns

A simple pattern is one in which the pattern represents the exact subgraph. For

example, if we were looking for a clique of size three in a graph, we would draw up the

clique as the pattern specification. These patterns can be alternatively called single

76

cardinality patterns, as each vertex drawn in the pattern specification needs to match

exactly one vertex in the host graph.

These patterns are straightforward to specify; however, ensuring determinism on

such graphs is not. In this case, determinism means that given a graph and pattern the

match returned should be the same from one execution of the pattern matcher to another

and from one matching algorithm to another. Pattern matching in graphs is non-

deterministic and different matching algorithms may yield different results.

Consider the example in Figure 18(a). The figure describes a pattern that has three

vertices P1, P2 and P3, each of type T. The pattern can match with the host graph shown

in Figure 18(b) to return two valid matches, {(P1,T1), (P2,T3), (P3,T2)} and {(P1,T3),

(P2,T5), (P3,T4)}. For sake of brevity matches are considered as a set of vertex bindings,

edge bindings have been ignored as they can be inferred from the vertex bindings. We see

that the result of the matching depends upon the starting point of the search and the exact

implementation of the algorithm.

 (a) Pattern (b) Host graph

Figure 18 Non-determinism in matching a simple pattern

The solution for this problem is to return the set of all the valid matches for a

given pattern. The set of matches will always be the same for a given pattern and host

graph.

77

Returning all the matches however, has a time complexity of , where C)C(O pC
h h is

the number of host vertices and Cp is the number pattern vertices. To make the pattern

matching usable it needs to be optimized. One approach is to start the pattern matcher

with an initial context. A context is used to start pattern matcher with an initial partial

match. For example, in Figure 18 the pattern matcher could be started with a binding

{(T1,P1)}. Thus, the context for the matching is the host vertex T1 and the matcher will

return only one match {(P1,T1), (P2,T3), (P3,T2)}. The initial binding reduces the search

complexity in two ways, (1) the exponential is reduced to only the unmatched pattern

vertices, and (2) only host graph elements within a distance d from the bound vertex are

used for the search, where d is the longest pattern path from the bound pattern vertex.

An algorithm for matching such kinds of patterns is given in Appendix A. The

algorithm takes as input the pattern, host graph and a partial match and returns a set of

matches. The partial match must have at least one vertex of the pattern bound to the host

graph. It uses a recursive approach to solving the matching problem and returns a set of

matches. There are cases where the pattern matcher has to be used on the entire graph

without restricting it to a context. This can be achieved by running the pattern-matching

algorithm for each host vertex.

Fixed Cardinality Patterns

If we need to specify a string pattern that starts with an ‘s’ and is followed by 5

‘o’-s. The ‘o’ could enumerate five times and write the patter as “sooooo”. However, this

is not a scalable solution and a representation format is required to specify such strings in

a concise and scalable manner. For strings a notation could be devised where the pattern

78

is written as “s5o” and the semantic meaning of such the notation would be that o needs

to be enumerated 5 times.

 (a) Pattern (b) The graph it will match

Figure 19 Pattern specification with cardinality

The same argument holds for graphs, and a similar technique can be used. The

pattern vertex definition can be changed to a pair (class, cardinality), where cardinality is

an integer. Vertex binding can also be redefined as a pair (PV, HVS), where PV is a

pattern vertex and HVS is a set of host vertices. For example, Figure 19(a) shows a

pattern with cardinality on vertices. The pattern vertex cardinality is specified in angular

brackets and a pattern vertex must match n host graph vertices where n is its cardinality.

In this case the match is {(P1,T1), (P2,{T2, T3, T4, T5, T6})}.

The fixed cardinality pattern and matching also have non-determinism. Even in

this case the issue can be dealt with by returning all the possible matches. If all the

possible matches are returned, there is a problem of returning a large number of matches.

For example in Figure 19, if the host graph contained another vertex T7 adjacent to T1

then the number of matches returned would be 6C5 (all combinations of 5 vertices out of

6). Thus, 6 matches will be returned and each having only one vertex different from the

other.

79

A more immediate concern is how this notion of cardinality truly extends to

graphs. In strings, there is an advantage of a strict ordering from left to right, while

graphs don’t. By just extending the example in Figure 19 with another pattern vertex we

see that the specification is ambiguous.

Figure 20(a) shows a pattern having three vertices. There are different semantics

that can be associated with the pattern. One possible semantic is to consider each pattern

vertex pv to have a set of matches equalling the cardinality of the vertex. Then an edge

between two pattern vertices pv1 & pv2, implies that in a match each v1, v2 pair are

adjacent, where v1 is bound to pv1 and v2 is bound to pv2. This semantic when applied

to the pattern in Figure 20(a) gives the graph in Figure 20(b).

(a) Pattern with three vertices

(b) Set semantics

80

(c) Tree semantics

Figure 20 Pattern with different semantic meanings

The algorithm to search the host graph for a set of matches according to the

above-mentioned semantics is given in Appendix B. This algorithm is a direct extension

of the algorithm in Appendix A.

The set semantics will always return a match of the structure shown in Figure

20(b), and it does not depend upon the factors like the starting point of the search and

how the search is conducted. However, with set semantics it is not obvious how to

represent a pattern to match the graph shown in Figure 20(c).

Another possible semantics could be the tree semantics: If a pattern vertex pv1

with cardinality c1 is adjacent to pattern vertex pv2 with cardinality c2, then the

semantics is, each vertex bound to v1 will be adjacent to c2 vertices bound to v2. Let b1

= (pv1,V1) and b2 = (pv2,V2) be the bindings for pv1 and pv2 respectively.

),(,21 212

2

11 nn

c

n
vveVvVv ∧∈∃∈∀

=

Relation 3

This semantics when applied to the pattern gives Figure 20(c). The tree semantic

is weak in the sense that it will yield different results for different traversals of the pattern

vertices and edges. For the traversal sequence pa, pb, pc the graph shown if Figure 20(c)

is obtained while for the traversal sequence pa, pc, pb a different graph as shown in

81

Figure 21 is obtained. Another problem with tree semantics is that graphs like the one

shown in Figure 20(b) cannot be expressed in a concise manner.

Figure 21 Conflicting match for the tree semantics

Both set and tree semantics discussed so far are incomplete in the sense that

certain pattern matches cannot be expressed with them. Choosing either one compromises

the expressiveness of the language. Also the tree semantics also brings in a different form

of non-determinism because different traversal sequences yield different results.

Fortunately, there is a pragmatic solution that solves all the problems: to use a more

expressive, extended set notation.

Extending the Set Semantics

If we want to specify a string “sxyxyxy”, we see that “xy” is repeated 3 times.

Extending the notation used before we would express it as “s3(xy)”. Using parenthesis

we were able to represent the fact that the “xy” sequence should occur 3 times. A similar

notion can be used in graphs as well. That is, by grouping vertices of a pattern to form a

sub-pattern, a larger pattern can be constructed using these sub-patterns. If a group

82

consists of a sub-pattern that has cardinality n then n sub graphs need to be found.

Another important point here is that while in strings the ordering of each element of the

group is implicit, in graphs we have to explicitly specify the connectivity. Pattern edges

that cross groups are used for this purpose.

To illustrate this point, Figure 22(a) shows the pattern that would express the

graph in Figure 20(c) and Figure 22(b) shows the graph the expresses the graph in Figure

21. With respect to the pattern P in Figure 22(a) there will be exactly one vertex PB that

will connect to exactly 2 vertices of type PC. The larger pattern will consist of the 3 sub

patterns of the type described by P. The resulting graph that will be matched is shown in

Figure 20(c).

The above exercise illustrates two points. First, set semantics along with the

grouping notion can express all the graphs that tree semantics can express and second, the

semantics are still precise and map to exactly one graph.

(a) Pattern for Figure 20(c)

(b) Pattern for Figure 21

Figure 22 Hierarchical patterns using set semantics

83

At this point it is apparent that a variety of graphs can be expressed in an intuitive,

concise and precise way. However, a large number of graphs are missing from the

Grouped Set Semantics (GSS) described above: these graphs are those having more than

one edge for the same pair of vertices.

Cardinality for Edges

Adding cardinality to pattern edges helps us express additional graph patterns in a

compact manner. Another example is called for and is shown in Figure 23. The figure

shows a pattern with cardinality on the edge. The semantic meaning is an extension of

Relation 1. Let b1=(V1,pv1) and b2 defined as

)2,1(,22,11
1

vveVvVv n

C

n=
∃∈∈∀

Relation 4

The extension is that instead of having one edge between each pair of vertices

there can be C edges where C is the cardinality of the pattern edge.

(a) Pattern (b) Matching Host graph

Figure 23 Pattern with cardinality on edge.

Variable Cardinality

Sometimes, the sub graph to be found is not of a particular structure but can

belong to a family of graphs. Suppose a string needs to be matched such that it starts with

84

‘s’ and is followed by 1 or more ‘b’s. Therefore, the pattern specification represents a

family of strings. This can be expressed with the help of regular expressions, such as

“s(b)+”. In the general case the number of ‘b’s can be bound by two numbers, the lower

and upper bound. To extend the example let us consider that 5 to 10 ‘b’s could follow the

‘s’. By extending the regular expression notation slightly, we can come up with a notation

“s(5..10)(b)”.

Using a similar method for graphs, the notation of cardinality to be variable of the

form (x..y), where the lower bound is x and the upper bound is y. Hence a particular

pattern vertex should match at least x host graph vertices and not more that y host graph

vertices. The upper bound can however be *, representing no limit. This approach can

also be used to specify optional components in a pattern by having the cardinality of

optional components as (0..1).

(a) Pattern (b) Family of graphs

Figure 24 Variable cardinality pattern and family of graphs

Figure 24 presents a variable cardinality pattern. The pattern in Figure 24(a)

specifies that 3..10 P2s can be connected to a P1, thus the family of graphs represented is

given in Figure 24(b). The required portion must be present while the optional part may

or may not be present. Finally the specification language has been extended to express a

truly large set of graphs.

85

However, there are a few problems with variable cardinality. Consider the pattern

in Figure 24(a) and suppose that there is a graph having T2..T11 connected to T1 in the

host graph. Should the pattern-matching algorithm return only one match namely the

entire host graph or all possible sub graphs with cardinality 3, 4 till 10. The way this

question is answered is that if more than one match occurs; then both the matches will be

returned if and only if neither match is a proper subset of the other. Thus the matches

returned would each be maximal and consistent with respect to the pattern.

12^21,2,1 mmmmMmm ⊄⊄∈∀ Relation 5

Relation 3 states that from the returned set of matches there should not be any two

matches such that one is the subset of the other.

This construction yields a precise and consistent language, which can be used to

specify complex patterns in a concise manner.

Pattern Graph and Match Definition

After the discussion on the specification of patterns we can now define pattern

vertices, edges and graphs.

A pattern vertex PV is a pair: (class, cardinality), where class is a UML class

defined in the heterogeneous metamodel and cardinality is a pair (lower bound, upper

bound). A pattern edge PE is a 4-tuple (etype, src, dst, cardinality), where etype is the

association the edge belongs to. Src and dst are the pattern vertices that the edge is

incident upon. The class of these vertices must be identical to the endpoint classes of

etype. A pattern graph PG is pair (GPV, GPE), where GPV is a set of vertices in the

graph and GPE is the set of edges and GPVdstGPVsrcGPEcdstsrcetypepe ∈∧∈∈=∀ ,),,,(.

86

The definition of a match can also be suitably revised to a pair (MVB, MEB),

where MVB is a set of vertex bindings and MEB is a set of edge bindings. Vertex binding

is defined as a pair (PV, HV), where PV is a pattern vertex and HV is a set of host graph

vertices. Similarly edge binding is a pair (PE, HE), where PE is a pattern edge and HE is

a set of host graph edges. The match must satisfy the following properties.

)hdst,pdst(VBD)hsrc,psrc(VBS
MVBVBDMVBVBS),hdst,hsrc,het(he,HEhe

),ycardinalit,pdst,psrc,pet(pe),HE,pe(EB where,MEBEB

=∧=
∈∧∈∃=∈∀

==∈∀

Q

and

upperClower
))upper,lower(,pclass(pv),HV,pv(VB

where,MVBVB
and

upperClower
))upper,lower(,pdst,psrc,pet(pe),HE,pe(EB

where,MEBEB

HV

HE

≤≤
==

∈∀

≤≤
==

∈∀

Graph Rewriting/Transformation Language

The graph transformation language is inspired by many previous efforts such as

[69][70][72][80][81]. It defines the basic transformation entity: a production/rule. A

production contains a pattern graph. These pattern objects each conform to a type: class

or association from the metamodel. Apart from this, each pattern object has another

attribute that specifies the role it plays in the transformation. There are three different

roles that a pattern object can play. They are:

bind: The object is used to match objects in the graph.

delete: The object is used to match objects, but once the match is computed, the

objects are deleted.

87

new: After the match is computed, new objects are created.

The execution of a rule involves matching every pattern object marked either bind

or delete. If the pattern matcher is successful in finding matches for the pattern, then for

each match the pattern objects marked delete are deleted and then the objects marked new

are created. Since the pattern matcher returns all matches for the pattern, there can be a

case where a host graph object is deleted from a match while the next match still has a

binding for it. The delete operation checks for such a situation and if it exists it does not

perform the delete and returns failure. Thus, only those objects can be deleted that are

bound exactly once across all the matches.

Sometimes, the patterns by themselves are not enough to specify the exact graph

parts to match and we need other, non-structural constraints on the pattern. For example,

“an integer attribute of a particular vertex should be within a range.” These constraints

can be descibed using a constraint language such as Object Constraint Language (OCL)

[87], a widely used standard that is directly related to UML, the metamodeling language

of GME. There is also a need to provide values to attributes of newly created objects

and/or modify attributes of existing objects. This done via “attribute mapping”.

The formal definition of a production is as follows: A production P is a triple

(pattern graph, guard, attribute mapping), where

 Pattern graph is a graph (in the definitions section).

 Pattern Role is a mapping for each pattern vertex/edge to an element of role =

{bind, delete, new}.

88

 Guard is a boolean-valued expression that operates on the vertex and edge

attributes. If the guard is false, then the production will not execute any

operations.

 Attribute mapping is a set of assignment statements that specify values for

attributes and can use values of other edge and vertex attributes.

Language Realization

The goal of GReAT is (1) to transform models that (a) belong to one meta-model

into models that belong to another meta-model or (b) to transform models within one

meta-model, and (2) to maintain the consistency of the models with respect to their meta-

models. Hence, it is important that the language only allows the user to draw patterns that

conform to the meta-models.

To maintain consistency and provide usability in GReAT, the following use case

is defined. The use case is supported through the services of the modeling environment

(GME).

 The user first imports the input and output metamodels in the form of libraries.

 Next, the user specifies a seperate metamodel that defines all the temporary

vertices and edges that will be need for the transformation.

 After attaching and specifying these metamodels the user can then draw

productions/rules that specify patterns.

Figure 25 shows an example rule. The rule contains a pattern graph, a Guard and

an AttributeMapping. Each object in the pattern graph refers to a class in the

heterogeneous metamodel. The semantic meaning of the reference is that the pattern

object should match with a graph object that is an instance of the class represented by the

89

metamodel entity. The default action of the pattern objects is Bind. The New action is

denoted by a tick mark on the pattern vertex (see the vertex StateNew in figure). Delete is

represented using a cross mark (not shown in figure). The In and Out icons in the figure

are used for passing graph objects between rules and will be discussed in detail in the

next section.

Figure 25 An example rule with patterns, guards and attribute mapping

GReAT relies on UML metamodels for defining patterns. Furthermore, the

patterns are also specified in (a superset of the) UML syntax. Since the modeler uses

UML for metamodeling it was more intuitive to describe the rules in UML too. By

making the user reference each pattern object, the consistency of the patterns and thus the

consistency of the transformations is enforced.

The Language For Controlled Graph Rewriting And Transformation

Since the pattern matcher is exponential in the number of pattern vertices there is

a need to devise methods to keep this complexity in manageable limits. The performance

of the pattern matching can be significantly increased if some of the pattern variables are

bound to elements of the host graph before the matching algorithm is started (effectively

90

providing a context for the search). The initial matches are provided to a transformation

rule with the help of ports that form the input and output interface for each

transformation step. Thus, a transformation rule is similar to a function, which is applied

to the set of bindings received through the input ports and results in a set of bindings over

the output ports. For a transformation to be executed, graph objects must be supplied to

each port in the input interface. In Figure 25 the In and Out icons are input and output

ports respectively. Input ports provide the initial match to the pattern matcher while

output ports are used to extract graph objects from the rule so that they can be passed

along to the next rule. The rules thus operate on packets, which are defined as sets of

(port, host graph object) pairs.

Figure 26: UML class diagram for the abstract syntax classes of GReAT: The core transformation classes

The next concern is the application order of rewriting productions. Classical graph

grammars apply any production that is feasible. This technique is good for generating and

matching languages but model-to-model transformations often can and need to follow an

91

algorithm that requires a more strict control over the execution sequence of rules, with

the additional benefit of making the implementation more efficient.

In order to better manage complexity in transformation programs it is important to

have higher-level constructs, like hierarchical rules and control structures in the graph

rewriting language. For these reasons GReAT supports (1) the nesting of rules and (2)

control structures. We show these capabilities here using the classes that form the abstract

syntax tree of the language. The common abstract base class for the language is

Expression as shown in Figure 26, and all other constructs like Rules and Blocks are

derived from it. The derivation implies a shared base semantics: all these classes

represent some kind of graph transformations.

Figure 27 shows input-output interfaces (Ports) of the Expressions (In and Out),

as well as sequencing (Sequence), the pattern class objects (PatternClass) and their

connection to the ports (Binding). The interface of the expressions allows the outputs of

one expression to be the input of another expression, in a dataflow-like manner. This is

used to sequence expression execution.

Figure 27: UML class diagram for the abstract syntax classes of GReAT: The interface

92

A CompoundRule can contain other compound rules, Tests, and PrimitiveRules.

The primitive rules of the language are to express primitive transformations. A Test is a

special expression and is used to change the control flow during execution.

The control flow language has the following basic control flow concepts.

 Sequencing – rules can be sequenced to fire one after another

 Non-Determinism – rules can be specified to be executed “in parallel”, where the

order of firing of the parallel rules is non deterministic.

 Hierarchy – CompoundRules can contain other CompoundRules or Expressions

 Recursion – A high-level rule can call itself.

 Test/Case – A conditional branching construct that can be used to choose between

different control flow paths.

Note that the approach followed here can be considered as a highly specialized

version of the transformation unit concepts introduced in [95]. The hierarchical rules can

be viewed as graph transformation modules, but in GReAT the control condition is

restricted. Also, GreAT does not address the issue of transactions, as all rule execution is

assumed single-threaded.

Sequencing of Rules

If the output interface of a rule is associated with the input interface of another

rule, they will execute sequentially. Figure 28 shows the flow of packets through the

rules. The packets are shown as a vertical set of letters where each letter refers to host

graph object. The packet objects map to the ports of a rule in the vertical layout. Thus, the

top graph object is bound to the top port and so on. Figure 28(a) shows the initial

condition where there are two input packets on the input interface of Rule 1. Rule 1 will

93

fire, consume all its input packets and produce a number of output packets as shown in

Figure 28(b). Then rule 2 will fire, consume all its input packets to produce a number of

output packets (shown in Figure 28(c)).

(a)

(b)

(c)

Figure 28 Firing of a sequence of 2 rules

Hierarchical Rules

There are two kinds of hierarchical “container” rules: (1) Block, and (2)

ForBlock. Both Block and ForBlock have the same semantics with respect to rules

connected to them. Thus, if in Figure 28 the rules 1 and 2 were hierarchical, then they

would have had the same effects as described above. All the semantic differences are

internal to the hierarchical rules.

(a)

94

(b)

(c)

(d)

(e)

Figure 29 Rule execution of a Block

The Block has the following semantics: it will push all its incoming packets

through to the first internal rule (i.e. it is same as the regular rule semantics). The input

interface of the block can be attached to the input interface of any internal block or to the

output interface of the block. In other words the block can send output packets from any

internal rule or pass its input packets as output. However, the output interface of a block

must be attached to exactly one interface and it cannot be attached to two different

interfaces. Figure 29 illustrates the execution of rules within a block. Figure 30 illustrates

the case when the output interface of a block is connected to the input interface of the

same block.

95

(a)

(b)

(c)

(d)

Figure 30 Sequence of execution within a Block

The ForBlock has different execution semantics than the Block. If there are n

incoming packets then the first packet will be pushed through all its internal rules to

produce output packets and only then the next packet will be taken. The semantics are

illustrated with the help of an example in Figure 31.

(a)

(b)

96

(c)

(d)

(e)

(f)

(g)

(h)

Figure 31 Rule execution sequence of a ForBlock

Similar to the block the input interface of the ForBlock can also be associated

with the input interface of any internal rule or the output interface of itself.

97

Branching using test case

There are many scenarios where the transformation to be applied is conditional

and a “branching” construct is required. In such casses GReAT supports a branching

construct called Test/Case.

The external semantics of a Test/Case is similar to any other rule. When fired or

executed it consumes all its input packets to produce some output packets. The internal

working of a test is a bit different from other blocks. In a Test all cases get their inputs

from the input interface of the Test. Unlike a Block or a ForBlock the execution of the

case is not non-deterministic but is based on the physical placement of the cases. The

cases are evaluated in a top-down order. Cases can only match, not make changes to the

graph. Even if a Case succeeds all other cases are executed. This can be concidered as a

series of if statements in a regular programming langauge without the else. There is a

construct called Cut which if enabled will stop the Test after the first successful Case.

Figure 32 shows a Test with two cases. The Test has one input interface and two

output interfaces ({OR1, OP1} and {OR2, OP2}). When the test is fired each incoming

packet is tested and placed on the corresponding output interface.

(a) (b)

Figure 32 Execution of a Test/Case construct

The test must contain at least one Case, and a case is a rule with no output pattern

and no actions. It contains a pattern (containing bind objects only), a guard condition and

98

an input/output interface. If the pattern matches and the guard evaluates to true, then the

case succeeds and the input packet given to the case is passed along, otherwise the case

fails.

(a) (b)

Figure 33: Execution of a single Case

Figure 33 shows a case with a successful execution. The input packet has a valid

match and so the packet is allowed to go forward. In Figure 34 the execution of a test is

shown. An input packet is replicated for each case. Then the input packet is tried with the

first case, it succeeds and is copied to the output of the case. Since the Cut is not enabled

in the first case the packet is tried with the second case, this time it fails and the packet is

removed. Finally, after all input packets have been consumed the output interfaces have

the respective packets.

(a) (b)

99

(c) (d)

(e)

Figure 34 Inside the execution of a Test

Non-deterministic Execution

When a rule is connected to more than one follow-up rule, or when there is a test

with more than one successful case, then the execution becomes non-deterministic. The

execution engine chooses a path non-deterministically, and the path that is chosen is

executed completely before the next path is chosen.

(a)

(b)

100

(c)

(d)

(e)

(f)

(g)

Figure 35 A non-deterministic execution sequence

Figure 35 shows a non-deterministic execution sequence. Here the non-

deterministic execution is caused due to a test/case but it could also have been due to a

rule connected to more than one other rule. After the branch there are packets at both the

101

output interfaces of the test. Thus, both rule 2 and rule 4 are ready to fire. Rule 2 is

chosen non-deterministically and fired, followed by the execution of the following rules.

This ends at rule 3. Then rule 4 and 5 are fired.

Termination

At one point, the transformation must terminate. A rule sequence is terminated

either when a rule has no output interface or when a rule having an output interface does

not produce any output packets.

If the firing of a rule produces zero output packets then the rules following it will

not be executed. Hence in Figure 35, if rule 4 produced zero output packets then rule 5

would not have been fired.

Enabling Optimized Graph Transformations

This section highlights language features in GReAT that facilitate the

development of optimized transformations.

Typed Patterns

It is well known that subgraph isomorphism is an exponential time algorithm in

terms of the input graph and the pattern graph where n is the number of nodes in

the input graph and p is the number of nodes in the pattern graph. In order to reduce the

average case execution time a number of steps can be taken.

)(pnO

The first step is to type the pattern vertices and edges. This restricts the search to a

subgraph of the host that only contains the particular types used in the pattern. If we

consider a host graph having say T types of vertices and if we assume that the vertices

102

have even distribution with respect to its type then the time complexity of matching a

pattern with Pt types of vertices is ⎟
⎠
⎞

⎜
⎝
⎛ × pt n

T
P

O)(. Even though the worst case execution

time is the expected case execution time will be reduced.)(pnO

Pivoted Pattern Matching

Another optimization technique is to start the pattern matcher with an initial

binding and we have named it “pivoted pattern matching”. In this technique the

programmer provides an initial binding for some of the models in the pattern graph to the

host graph nodes. The pattern matching is then performed in the context of the initial

binding.

In Figure 36, the pattern vertex Pv is initially bound to the host vertex Hv. This

restricts the search to the area shown within dotted line. This particular optimization

technique works well for sparse graphs. Consider a graph that has an average degree (the

number of edges incident on a vertex) of 3 and the greatest distance from the pivot to a

vertex in the pattern graph of 2. Then the matching algorithm will only search within a

tree of depth 3 starting from the pivoted node. In general the number of host graph

vertices included in the search will be where c is the connectivity and d is the depth of

the pattern. Hence the order complexity of the matching algorithm is where

 and p is the number of unbound pattern vertices.

dc

)(pnO

dcn =

103

Figure 36 Pivoted Matching

Pivoted pattern matching optimization, when added to the typed pattern vertex

technique gives a significant saving because in this case the connectivity of the restricted

graph is even less. Figure 37 shows a rule with In and Out ports that have been used to

provide the initial binding. The OrState pattern vertex is bound to a host graph vertex

supplied by the port labeled In.

Figure 37 Transformation Rule with pivot

Reusing Previously Matched Objects

The next optimization technique used in the GReAT is the called “Reusing

previously matched objects”. The idea here is to cache previously found results and pass

it on to subsequent rules as the initial binding.

104

For example, in Figure 38, there are two rules. The first rule gets an input binding

for Parent and finds all ChildA, ChildB, Assoc triples that correspond to the pattern. In

the subsequent rule these triples are required to perform an action. Instead of finding the

pattern again, the first rule passes the triples along to the next rule. For the next rule they

serve as the initial binding. When a rule executes it can produce multiple matches. Each

match produces a host graph object for each output port and this coherent set of objects is

called a packet. These packets are sent to the subsequent rules as one unit.

User Controlled Traversal

GReAT supports hierarchical specification of transformation rules. High-level

rules can be created by composing a sequence of primitive rules. There are two kinds of

high-level rules in GReAT: Block and ForBlock. The execution semantics of the Block is

to pass all input packets to the first contained rule, the outputs packets created by it are

passed to subsequent rules and so on. After all packets have been processed and all output

packets of the Block have been generated, the Block returns control to its parent.

Semantics for the ForBlock is to pass one input packet at a time through all the contained

rules. After the first packet has been processed all the way to the output of the ForBlock

the next packet is processed. These two constructs enable the user to choose different

traversal strategies. A Test/Case is also available in GReAT. It can be used to choose

between different execution paths, during the transformation and is similar to the ‘if’

statements in programming languages.

105

Figure 38 Sequence of rules with passing of previous results

106

CHAPTER V

THE EXECUTION FRAMEWORK FOR GREAT

This Chapter describes the execution framework that we built for GReAT. This

infrastructure can be divided into the following parts.

1. Concrete Syntax: the realization of the transformation language.

2. Abstract Syntax: a syntax that is void of any concrete representation

such that various concrete representations can be mapped to this

format.

3. Execution Engine: a virtual machine that can execute GReAT

programs on a given input to produce output.

4. Debugger: debugging support on top of the virtual machine to provide

debugging functions such as single step as well as a visual debugging

interface.

5. Code Generator: the equivalent of a compiler that will consume a

GReAT program and produce C++ code that has the same behavior as

the GReAT program.

6. IDE, Integrate development environment: an environment that

consists of an editor, concrete syntax, mapping to abstract syntax and

integration with the engine, debugger and code generator.

These components of GReAT will be discussed in details in the following sub

sections.

107

Concrete Syntax

The concrete syntax of GReAT is implemented by a paradigm called UML Model

Transformer (UMT) and it contains three parts.

(1) A metamodeling syntax that allows users to attach metamodels in the form

of UML class diagrams and to create temporary/cross associations.

(2) A concrete syntax for the transformation. This includes syntax for pattern

specification, transformation specification and control flow specification.

(3) Syntax for configuring the execution of the various transformations.

The metamodeling syntax is a restricted subset of UML class diagrams. Entities in

this language are Package, Class, Association, Association Class, Composition,

Inheritance and OCL constraints. These entities have the same semantics as in the UML

specification. In UMT any number of UML packages can be attached. Typically, in a

transformation one package is attached for the input domain, another for the output

domain and a third for temporary vertices and links. In general, there are no restrictions

on the number of domain that can be used.

Figure 39 Concrete syntax of the different expressions in GReAT

108

The abstract syntax of the transformations, expression and their interfaces has

been shown in Figure 26 and Figure 27. The concrete realizations have been shown in

Figure 39 and Table 3. The figure shows the concrete syntax for the primitive

expressions: Rule and Case, compound expressions: Block, ForBlock, Test and the

ExpressionRef. Table 3 shows the concrete syntax of the expression interfaces and

pattern graphs. It also shows the attributes each entity has.

Table 3 Concrete Syntax of the pattern graph and the rule interface

Entity Kind Concrete Syntax Attributes

In

Out

Pattern Class

Action

PatternCardinality

Reference

Guard

ExpressionString

Attribute Mapping

ExpressionString

Pattern

Association

Action

PatternCardinality

109

Pattern

Composition

Action

Pattern

Association with

association class

All these concrete syntactic elements come together to form the UMT language.

Instances of the language can be seen in Figure 25, Figure 28, Figure 29, Figure 30,

Figure 31, Figure 32 and Figure 33.

The concrete syntax of for capturing the configuration information is available in

Appendix E.

Abstract Syntax

Three abstract syntax formats have been developed to capture different types of

information required for the execution of the transformation tools. These are (1) the

Graph Rewriting (GR) format to store the transformation rules, (2) an xml based format

to store UML metamodels and (3) GReATConfig, another XML based format to store the

configuration information.

The GR format has been described using UML class diagrams and has an XML

schema defined for it. The UML class diagram of the GR format (Figure 40) shows the

data structure representation. The abstract base class RuleBase is the basic element of the

110

transformation. It can be realized either as a RewritingRule or as a RuleProxy to a rule,

where a rule proxy is a reference to another rule. The RewritingRule has an attribute

called ruleType and this field can be one of the following {Rule, Case, Block, ForBlock,

Test, ForTest}. This attribute was used to capture the different rule information in order

to keep the language flexible such that new rules types could be easily added. The control

flow information is captured using the sequence association between rules.

PatternObject
<<Atom>>

RuleProxy

PassAlong
<<Connection>>

name : String

GRBase
<<FCO>>

name : String
action : String
cardinality : String
position : String[0..1]

Sequence
<<Connection>>

name : String
recursive : Boolean
condition : String[0..1]

RuleBase
<<FCO>>

name : String
position : String[0..1]

ObjectWrapperProxy
<<Atom>> OutputPort

<<Atom>>

ObjectLink
<<Connection>>

relationshipType : String
dstRoleName : String
srcRoleName : String
dstObjectID : Integer
srcObjectID : Integer

ObjectWrapper
<<Atom>>

classType : String
objectID : Integer
paradigmName : String
isAssociationClass : Boolean[0..1]

Code
<<Atom>>

code : String

InputPort
<<Atom>>

RewritingRule
<<Model>>

ruleType : String
guard : String
exhaustive : Boolean
forBlock : Boolean
cut : Boolean
ruleId : Integer

0..*

dst
0..*

src
0..*

0..*

srcObjectWrapper
0..*

dst
0..*

referedBy
*

refersTo
1

src
0..*

0..*

0..*

0..*

dstObjectWrapper
0..*

Figure 40 GR: the abstract syntax of GReAT

Rules can contain GRBase the base class for pattern objects, pattern links and

input/output ports. Primitive rules only contain pattern objects and links, while compound

111

rules only contain input and output ports. Each pattern object and link has a attribute

called action which states the role the object plays in the pattern. The roles as we know

can be either CreateNew, Bind or Delete.

Rule proxies refer to other concrete rules. This is used to make a call to a

previously defined rule. Rule proxies can only contain ObjectWrapperProxies. These are

references to the interface of the original rule and are used to capture the data relations

between the proxy and preceding, succeeding rules.

The GR format depicting the abstract syntax helps to decouple the

implementation of the language from its concrete syntax. There could be a different

concrete syntax that can be used for the specification of transformations. Transformations

specified in a particular concrete syntax can then be mapped to the GR format for

execution.

The GReAT Config format has also been defined using a UML class diagram and

an automatically generated xsd. (see Appendix E)

Execution Engine

The realization of a language can be achieved using various methods. The first is

by creating an interpreter, a program that will read, understand and execute language at

runtime. The interpreter can be regarded as a virtual machine that can execute sentences

of a language. The other approach is that of compilation where the sentences of the

language are translated to assembly or machine code. The machine code can then be

directly executed. In languages such as Java, the classical separation of interpreters and

compilers do not hold true. In Java, a compiler is used to convert Java programs to a byte

112

code format and then an interpreter called the Java Virtual Machine is used to execute the

byte code.

GReAT uses a similar approach in the execution engine. The concrete syntax of

GReAT is first compiled into the abstract syntax representation (the GR format). A

virtual machine called the Graph Rewriting Engine (GRE) has been developed that can

execute transformations represented in the GR format.

The input and output of GRE are typed attributed graphs that conform to a domain

specification. This adds another level of complexity where the data representation has to

be discovered at runtime. Due to this reason handling of input and output graphs is also

complicated.

The primary modules of the GRE are:

1. Metamodel independent data management layer. This part is

required by the GRE to abstract out data access such that the traversal,

modification and creation of graphs can be dealt in a uniform manner

by the transformation engine. This layer uses the graph and its

metamodel to identify and interact with the graphs.

2. Transformation traversal layer. This part of GRE is responsible for

reading and understanding the transformation specification. It is also

known as the sequencer (see Figure 41). It starts from the start rule and

is responsible for calling the rule executor with the correct inputs and

passing the outputs of the executor to the next schedulable rule.

3. Sequencer. This can be considered as the scheduler of GRE. It decides

the order of execution of the rules based on the rule type and data

113

availability. It is also responsible for making the packets available for

the rule and for passing the packets to the next rule after execution.

4. Rule Executer. Once a rule has been selected to fire, it consumes each

input packet one at a time to perform pattern matching and executing

the effector. The pattern matching is the core of the transformation

engine and has been implemented based on the algorithms described in

the pattern specification language section of Chapter IV.

Rule Executor

G
en

er
ic

 U
D

M
 A

PI

G
eneric U

D
M

 A
PI

Graph Rewrite (GR) API

R R

R R

R

Rules Sequencing

Pattern
Matcher Effecter

Sequencer

GRE

Input Graph

2 4

3 6

51

Input Meta
Model

D
escribes

Output Graph

A

B

C

D

E

Output Meta
Model

D
escribes

Figure 41 High-level block diagram of GRE

Figure 41 shows the high-level block diagram with the essential features of GRE.

The input and output graphs, along with their metamodel are accessed through UDM’s

[88][89] generic API. UDM abstracts out the storage format for the input and output and

114

provides uniform, metamodel independent access to the models. The GR specific API is

used to access the transformation specification since the GR format will seldom change.

The internals of GRE consist of the sequencer and rule executor. The sequencer is

implemented as a hierarchical stack machine. Within a parent rule the first step is to add

all the ready-to-fire rules to the stack. The next rule to be fired is fetched from the stack.

The differences in the rule types are maintained using different subroutines that add and

remove elements from the stack in different ways. The execution semantics of these

compound rules has been described in detail in Figure 30.

Function Name: ExecuteBlock
Inputs : 1. List of Packets inputs
 2. Expression block
Outputs : 1. List of Packets outputs
outputs = ExecuteBlock(block, inputs)
{ Stack of Rules ready_rules
 foreach next_rule of block.next_rules()
 { if(next_rule equals block)
 { outputs.Add(inputs)
 }
 else
 { ready_rule.Push(next_rule,inputs)

 }
 }
 while(ready_rules.NotEmpty())
 { current, arguments = ready_rules.Pop()
 return_arguments = Execute(current, arguments)
 For Each next_rule of current.next_rules()
 { if(next_rule equals block)
 { outputs.add(inputs)
 }
 else
 { ready_rule.Push(next_rule,inputs)
 }
 }
 }
 return outputs
}

Figure 42 Block execution algorithm

The execution of the Block (see Figure 42) consists of a a ready_rules that is

initialized with the rules that are connected to the input interface of the the Block. The

stack machine then runs till there are no more rules in the stack. The top of the stack is

115

popped and executed, then the rules that are connected to the output interface of the

executed rule are placed onto the stack. When a rule is fired, all incomming packets are

passed to it. The execution of the ForBlock is slightly different as descibed in Figure 31.

In the ForBlock the entire rule chain is executed with one packet at a time. This is

achieved (see Figure 43) by calling the Block execution for each input packet to the

ForBlock and then gathering the output packets.

Function Name: ExecuteForBlock
Inputs : 1. List of Packects inputs
 2. Expression forblock
Outputs : 1. List of Packects outputs
outputs = ExecuteForBlock(forblock, inputs)
{ List of Packects outputs
 foreach input in inputs
 { returns = ExecuteBlock(forblock, input)
 outputs.Add(returns)
 }
 return outputs
}

Figure 43 For block execution algorithm

The Test is similar to a set of “if” statements without the “else” part. Since the

default semantics are that an input packet will be tested with all the cases and more than

one case may succeed, there is a requirement for an exclusive style of branching so that

only one case succeeds. A variant of this behavior is achieved using a special attribute of

a Case called the “cut”. When Case has its “cut” behavior enabled, if the case succeeds

on a given input, the input will not be tried with the subsequent cases. If each case in a

test has the “Cut” enabled, then the test will behave like an if-elseif-else programming

construct. To implement the “cut” an explicit ordering of the cases is required. The order

of testing cases is derived from the physical placement of the case within the test, in the

graphical model. The cases are evaluated from top to bottom. If there is a tie in the y co-

116

ordinate then the x co-ordinate is used from left to right. Figure 44 shows the execution

algorithm of the Test.

Function Name: ExecuteTest
Inputs : 1. List of Packects inputs
 2. Expression test
Outputs : 1. List of Packects outputs
outputs = ExecuteTest(test, inputs)
{ List of Packects outputs
 List of Cases cases =
 test.cases_in_sequence()
 for each input in inputs {
 for each case in cases {
 returns = ExecuteCase(case, input)
 outputs.Add(returns)
 if(case has a cut and return exist)
 break
 }
 }
 return outputs
}

Figure 44 Test execution algorithm

Once a primitive rule is selected for execution the rule executor takes control.

There are primarily two functions of the rule executor. The first is the pattern matcher

and the second is the effector. Figure 45 describes the algorithm executing a production

(a “rule”). This algorithm calls the pattern matcher described in Appendix A and B. A

“Packet” provides the initial binding required by the pattern matcher and the “Effector”

function performs deletion and creation of objects. All the vertices/edges marked for

deletion are deleted and vertices/edges marked for creation are created. After all the

structural changes have been made, the attribute mapping specification of the rule is

executed on the match to changes the attribute values.

Function Name : ExecuteRule
Inputs : 1. Rule rule (rule to execute)
 2. List of Packets inputs
Outputs : 1. List of Packets outputs
outputs = ExecuteRule(rule, inputs)
{ List of Packets matches
 List of Packets outputs
 for each input in inputs

117

 { matches = PatternMatcher(rule, input)
 for each match in matches
 { if match doesn’t satisfy guard
 matches.Remove(match)
 }
 for each match in matches
 { Effector(rule, match)
 outputs.Add(match)
 }
 }
 return outputs
}

Figure 45 Algorithm for rule execution

Graph Rewriting Debugger (GRD)

The success of a programming language often depends on the quality of the error

messages a compiler provides and usefulness of the debugger to find and fix semantic

errors. With this in mind a debugger for GReAT was developed. Graph Rewriting

Debugger (GRD) consists of the following parts.

1. An extension to GRE to allow the transformation to break and single step.

2. A command line debugging interface that allows users to set break points,

single step and retrieve stack information.

3. A front end GUI that allows the same features in an interactive environment

where the transformation, transformation call stack and input/output packets

can be visualized.

The GRD was not developed by me and has been mentioned here for the sake of

completeness.

118

Code Generator

For the sake of efficiency the transformations should have a compiler that

converts the transformation specification into code. In the case of GReAT the compiler is

composed of two stages, (1) the front-end that converts the concrete syntax to GR and (2)

the back-end code generator that generates C++ code from the GR format.

If we write the Graph Rewriting Engine (GRE) of GReAT as a function it will

have the following signature:

OTMMIGRE OI →×××)(: , where

• - metamodels. A Metamodel is a graph that defines the graph grammar

of the input/output models.

OI MM ,

• I – input model. A graph that conforms to the metamodel . IM

• O- output model. A graph that conforms to the metamodel . OM

• T - transformation. Is a graph rewrite/transformation specification [85].

The Code Generator performs a partial evaluation of the GRE function to produce

code specific to a given transformation and input/output metamodels.

() ()OITTMMCG COI →→×× ::

The justification for the partial evaluation is that the transformation and the

metamodels make up the invariant part of transformation system. The same

transformation is typically run on multiple inputs over a course of time. We argue that

once the transformation and the modeling paradigm(s) reach a mature state, the

transformation should be compiled into a high-performance executable that is capable of

performing transformations in an efficient way.

119

By treating the metamodels as invariants, the CG can generate code that

manipulate input and output models using paradigm-specific API’s. These API’s are

generated by Universal Data Model (UDM), a framework that provides object-oriented

C++ interfaces to programmatically access input/output models. UDM can generate a

domain specific custom API with type-safe access methods for object creation/removal,

link creation/removal, and attribute setters/getters [89]. The transformation executable

can be built by compiling the generated transformation files and the paradigm-specific

API files [85].

Comparison of CG with GRE

In this section a comparison of the execution time of the GRE and the Code

Generator is presented. Two transformation problems have been chosen for the

comparison. These transformations are:

1. Df Fdf: Transform Hierarchical dataflow to its equivalent Flat dataflow

representation.

2. Hsm Fsm: Transform Hierarchical Concurrent State Machine (HCSM) to its

equivalent Finite State Machine (FSM).

120

0

100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000

Number of objects in input graph (n)

Ti
m

e
(s

ec
)

GRE
CG
n^2

0

2

4

6

8

10

12

14

16

18

20

0 200 400 600 800 1000

Number of objects in input graph (n)

Ti
m

e
(s

ec
)

(a) Normalized performance (b) Code Generator speedup

Figure 46 Performance graphs for Df Fdf

To evaluate the performance of CG in comparison with GRE, the Df Fdf

transformation was executed on 7 different input graphs. The size of these graphs varied

from 24 vertices to 914 vertices. Execution times of GRE and CG were measured for all

the inputs. Figure 46 (a) is a plot of the input graph size (n) vs. normalized execution time

for both GRE and CG. Matlab’s polyfit function was used to find the closest fitting

polynomial or exponential for the results and the second order polynomial yielded the

best results. For this reason the n2 plot is also shown in Figure 46. From the graph one

can see that the order complexity of the transformation doesn’t change significantly

between GRE and CG and is governed by the complexity of the transformation

algorithm. Experimentally it has been seen that the transformation algorithm’s

complexity is approximately ()2nO . Figure 46 (b) shows the graph of n vs. speedup

achieved by the code generator. The dashed line in the graph represents the average

speedup of 9.3x. From the graph it is observed that the speedup varies within a bound

ranging from 4x to 18x.

121

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30

Number of objects in input graph (n)

N
or

m
al

iz
ed

 T
im

e
(t) GRE

CG
2^n

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30

Number of objects in input graph (n)

Sp
ee

du
p

(G
R

E/
C

G
) (

x)

(a) Normalized performance (b) Code Generator speedup

Figure 47 Performance graphs for Hsm Fsm

For Hsm Fsm, 4 input graphs were used. These graphs only had parallel states

and varied from 11 vertices to 27 vertices. Execution times of GRE and CG were

measured for all the inputs. Figure 47(a) is a plot of the input graph size (n) vs.

normalized execution time for both GRE and CG. The polyfit function was again used

and this time an exponential to the base 10 yielded the closest results. For this reason

Figure 47 also shows the 2n plot. From the graph we can see that the order complexity of

the transformation doesn’t change between GRE and CG and is governed by the

complexity of the transformation algorithm. Figure 47(b) shows the graph of n vs.

speedup achieved by the code generator. The dashed line in the graph represents the

average speedup of 83.3x. From the graph we can see that the speedup varies within a

bound ranging from 14x to 119x. The 14x speedup was observed for very small models

and could be because of a constant runtime overhead. A speedup of ~100x was observed

consistently for larger models.

From the experiments we see that the user is able to specify transformations with

polynomial characteristics. This can be attributed to the language features provided in

122

GReAT. On the other hand exponential algorithms can also be specified as in the case of

Hsm Fsm.

The second conclusion is that the order complexity of the transformation remains

the same for both GRE and CG. This is an expected result because the code generator

does not perform any modifications that can provide a gain in order complexity.

The speedup does not seem to have a definitive trend with respect to the input size

but varies a lot from one kind of transformation to another. Df Fdf, an ()2nO

transformation yielded an average speedup of ~9x while the Hsm Fsm, an ()nO 2

transformation yielded an average speedup of ~85x. These results make us believe that

the speedup is dependent on the complexity of the transformation. For higher complexity

transformations the speedup appears higher.

One possible reason for such a result can be based on the percentage of the total

execution time spent in pattern matching as opposed to packet passing and other

housekeeping work. Since a higher order complexity algorithm will spend more time in

the pattern matcher, and the code generator partially evaluates the pattern matcher, a

better speedup is observed. When the time complexity of the algorithm is small and the

size of the models is large the packet-passing/housekeeping overhead is a large

percentage of the total execution time and the speedup observed is less [85].

Integrated Development Environment

The integrated development environment consists of an editor that is aware of the

concrete syntax of the transformation language, integration of the interpreter, debugger

and compiler within the same environment.

123

IDEUMT

ConfigurationConfiguration
MetamodelMetamodel

Sy
nt

ax
 H

ig
hl

ig
ht

in
g

M
od

el
 U

pd
at

e
Au

to
 C

om
pl

et
io

n
TransformationTransformation

R R

R R

R
Generate GR

UML2XML

Gen Config

Debugger GRE Code
Generator

GRD GRE CG

GR Format

GReAT
Config

UDM UML
format

Figure 48 Block diagram of the GReAT IDE

The GReAT IDE is centered on the concrete syntax called UML Model

Transformer (UMT). A metamodel for UMT was created to configure GME as a UMT

editor. Around this editor other features were added to convert the editor to become an

IDE. The suite of tools developed around UMT can be classified into three categories. (1)

Model development tools, (2) Model transformation tools and (3) Execution invocation

tools. Model development tools are those that are used assist the process of model

building. The model transformation tools are used to covert the concrete syntax into the

intermediate representations. Execution invocation tools are basically a set of GUI based

124

access points to the GRE, GRD and CG. They help the user to run, debug and test the

transformations within the same framework.

Model Development Tools

To facilitate the development of transformations using the concrete syntax the

model editor should make the model development process as user friendly as possible.

GME provides domain-specific editing interface where only syntactically correct models

can be created. However, it would be better to prevent semantic errors or, at least, report

them early. Static semantic errors can be reported with the help of OCL constraints that

are evaluated during the model building process. Some errors can be caught and

automatically corrected.

Keeping this in mind a set of tools was developed for three primary reasons:

1. Automatic update of metamodels: Metamodels are developed and

modified in their own files and need to be kept in sync with the

metamodels in the transformation. For this reason a metamodel update

tool was created that would help copy the modified metamodel into the

transformation and update all references from the old one to the new.

2. Syntax highlighting: In the transformations pattern objects can have

one of three possible actions, namely, Bind, CreateNew and Delete.

Each action is associated a different color and different visual

representation to clearly distinguish them.

3. Automatic inference of pattern attributes: Some combinations of

attributes are invalid and are automatically corrected. For example, if a

pattern object is marked CreateNew, then its composition with the

125

parent can only have one action and that is CreateNew. Similarly, there

are many cases where the values can be automatically filled. Another

example is for the role names on the association. When a pattern

association is created, based on the typed of the source and destination

object the roles on both ends of the association can be identified from

the metamodel.

Execution Invocation Tools

Apart from supporting the development of the transformations, the IDE should

also support the execution in an effortless manner such that rapid evaluation of the

transformations is supported. For this reason the three execution tools: GRE, GRD and

CG have been integrated with the GReAT IDE. This has been achieved by providing a

GUI front-end to these that that can be invoked from within the framework.

126

CHAPTER VI

A CASE STUDY – SIMULINK/STATEFLOW TO HSIF

In this Chapter the solution for a challenge problem is described to demonstrate

the use of GReAT. The challenge problem chosen for this task is the semantic translation

from Matlab Simulink/Stateflow (MSS) to Hybrid System Interchange format (HSIF) and

it can posed as follows: Given the model of a dynamic system in MSS, compute an

equivalent dynamic system model in HSIF which produces the same execution traces

when executed, given the operational semantics of HSIF. For pragmatic reasons this

constraint was relaxed. First, MSS includes procedural components which are impossible

to express in HSIF. To overcome this, restrictions were imposed on MSS that only a

subset of the MSS modeling language would be translated. Second, HSIF was defined

using mathematical definitions in English, and not operationally (i.e. not via a simulation

algorithm). Therefore, a mapping between constructs available in HSIF (e.g. discrete

locations, differential equations, transition guards, etc.) and similar constructs in MSS

had to be designed such that the two models described the same dynamic system.

In the subsequent sections we describe the inputs and the outputs of the

transformation, specify the translation strategy, describe how the transformation was

specified in GReAT, give an illustrative example for the use of the translator, and

describe the user experience in using GReAT.

127

The Inputs and Outputs of the Semantic Translator

The output: HSIF

HSIF is an interchange format that allows representation of hybrid systems using

dynamic networks of hybrid automata. The detailed specification is available in [98]. The

automata in HSIF follows the definition of hybrid automata (HA) [99] with a finite

number of locations (or discrete states), where each location has a number of differential

and algebraic equations associated with it. Differential equations capture continuous time

dynamics in that location, while algebraic equations describe dependencies among

variables. HSIF is capable of expressing networks of hybrid automata, where the

automata can interact with each other using signals and shared variables. Signals are

single writer-multiple reader variables that follow synchronous semantics, while shared

variables can have multiple writers and multiple readers.

The input: A subset of the MSS language

Simulink has a rich set of model elements (Simulink blocks) covering various

areas of signal processing. In Simulink continuous dynamics and discrete behavior can be

mixed arbitrarily. On the other hand, HSIF has a clean separation between continuous

and discrete behavior. Mapping arbitrary MSS models with complex interactions between

continuous and dynamic behavior to HA is a difficult problem. The solution was to

choose a subset of Simulink/Stateflow that maintains a clean separation between the

continuous and discrete behavior. A subset of the primitive blocks from MSS was

carefully chosen such that it provides a useful coverage. The supported Simulink blocks

are as follows:

128

• Continuous time blocks: Integrator, State-space, Transfer Function, Zero-

Pole

• Mathematical operators: Product, Sum, Gain, Min/Max, and any single-

input/single-output function (Abs, Trigonometric, etc.) No logical blocks are

allowed in the current implementation.

• Signal and Systems: Mux, Demux and ground.

• Sources and Sinks: Matlab workspace constant, In, Out, To workspace and

From Workspace.

• Nonlinear elements: Controlled switch and Manual Switch.

• Stateflow diagrams: Hierarchical and concurrent.

The input models must comply with the following restrictions: (1) Stateflow

diagrams can receive and provide continuous signals from and to Simulink. (2) Stateflow

can also provide switching signals that are always connected to the control input of a

Switch block. (3) Switches can be controlled only by these switching signals. These

restrictions result in a clear separation of discrete and continuous behavior where all

structural changes on the system are made through switches. Intuitively, each

combination of these switches corresponds to a discrete location of the HA.

Example: Tank Level Control

To illustrate the steps a translation algorithm has to take, an example is provided

in this section. As shown in Figure 49, there is a tank containing fluid, with an inlet pipe

and two outlet pipes. Each pipe has a valve, named V1, V2 and V3 that can be in either

open or closed state. A valve is modeled as a switch in MSS. Sensors can sense the height

129

of fluid in the tank (h) and the flow through valve V3 (em flow). A controller regulates

the system using the state machine shown in the Figure 49. In the initial state of the

system V1 is closed and V2 is open. When the height of the tank goes above 10 units

then outlet values V1 and V3 are opened. When the flow through V3 becomes greater

than 5 units, the inlet value V2 is closed. The inlet V2 is opened and outlet V1 is closed

when the fluid level drops below 8 units.

Figure 49 A tank with three valves

Looking at the models, the number of locations in the final hybrid automata is not

apparent. On closer inspection it is seen that the in the initial state Low, valve V1 is

closed and V2 is open. However, the value of value V3 is unspecified, thus the initial

state has discrete behavior, represented by the opening or closing of V3. Thus, state Low

130

needs to be split into two states such that one of the states is active when V3 is open,

while the other one is active when the V3 is closed, connected via a state transition.

Having inspected the entire system and the controller’s state machine, the resulting state

machine diagram can be drawn up as shown in Figure 50.

Figure 50 The ”true” (hybrid automata) state machine for the tank example

After all the discrete states are identified, the next step is to find the differential

equations for each state. Since the value of the switches are all defined for a given state,

the Simulink diagram is now purely continuous and variable substitution can be used to

find the differential equations. Differential equations are calculated from the output of the

integrator block (see block with 1/S in Figure 50). For example, for location High111 in

Figure 50, the differential equation for the tank (block 1/S in Figure 50) block can be

found as follows. Let the output of each block have the same name as the block. Then,

d/dt(tank) = Sum, where Sum is the output of the summation block that can be substituted

with the sum of its inputs: d/dt(tank) = (−Switch1 + Switch2 − Switch3) Since the

settings of the switches for this location are known, those paths will be chosen. A switch

131

having the value of ‘1’ indicates that the topmost input of the switch is passed through.

Thus, Switch1 will be replaced by the tank variable. Switch2 is replaced by 36*1 and

Switch3 is replaced by the output of the MATLAB function which is 3*max(0,tank-15).

Finally the differential equation of the tank level is:

)15,0max(*336)(−−+−= tanktanktank
dt
d

Implementing the Algorithm in GReAT

This translation algorithm has been implemented using GReAT. It contains 131

rules, 40 compound rules and 22 test/cases. The implementation is divided into two parts,

the first deals with finding all the discrete locations in the Simulink/Stateflow diagram

and the second deals with inferring the continuous dynamics for each location.

Translating Stateflow

In the Stateflow part of the algorithm (see Figure 51), first the Stateflow models

are converted into an internal representation in CreateHierarchicalStateChart. Next, the

hierarchical concurrent state machine is converted to its equivalent, “flat” finite state

machine in HSM2FSM. Then in CreateVarAs, associations of Simulink switches with the

states are transferred to the flat machine. At this stage StateSplitting, the splitting

algorithm is performed (see Appendix F). After all the required discrete states/locations

have been found, Reachability is executed that performs reachability analysis on the

models to eliminate all unreachable states. At this state the number of discrete states in

the system is known and corresponding locations in HSIF are created.

132

Figure 51 The StateflowPart Rule

HSM2FSM is the part of the transformation that converts a hierarchical concurrent

state machine to an equivalent flat representation. The flattening algorithm is depth-

first/bottom-up and is achieved using a recursive block Top-level (shown in Figure 52).

HSM2FSM gets input from the input port InState. The input can be of type or-state, and-

state or simple-state. The first expression inside top-level is a test/case called Test that

branches according to the type of input. If the input is an and-state it is passed to the

block called And that flattens the and-state. If the input is an or-state, it is passed to the

block called Or that deals with the flattening the or-state, and if the input is a simple-state

it is passed directly to the output port OutState without any processing.

Figure 52 The HSM2FSM rule

133

Figure 53 shown the rules inside the Or block of Figure 52. These internal rules

are used to flatten an or-state. The first rule in the rule chain is CallRecursiveOnChildren,

a block that finds all the contained states of the or-state being processed and then called

the HSM2FSM rule (Figure 52) for each of them. The next expression TestForChild will

only execute after the recursive calls have been executed and thus at this point the or-

state being flattened will only contain flat or-states (and-state when flattened will also

produce an equivalent flat or-state) and primitive states. TestForChild is a test/case and it

tests to see if the or-state contains any or-state type children. If not, then the or-state is

already flat and is passed to the output port. If the or-state contains other or-states then it

is passed to ElevateChildOr rule (Figure 54).

Figure 53 Inside the OR rule

Figure 54 shows ElevateChildOr rule. In the rule, the or-state being flattened is

Or1 and for each contained Or1x child or-state having a child State, a new StateNew is

created as the child of Or1. The next rule in sequence is CreateInitTransition. This rule is

used to create equivalent transitions for the init transition within Or1. ElevateTrans is the

134

next rule and it creates transitions for each transition contained in Or1x. CreateOrTrans

The next rule is used to create equivalent transitions for each transition that is incident

upon Or1x. The last rule in the sequence DeleteChildOrs is used to delete Or1x. At this

stage the Or1 state is a flat or state.

Flattening an and-state is more complex and requires a few more rules. For the

sake of brevity it has not been described here.

Figure 54 ElevateChildOr rule

StateSplitting (see Figure 55) is one of the most complex parts of the mapping and

it is done in stages. The first stage is Infer Implicit Signals and it implements Step 2 of

the algorithm described in Appendix F. This is followed by NewMachine which creates

an empty state machine. The Create State Tribes performs state splitting based on Step 1.

The next step is Transfer Transitions which implements Step 3 by appropriately mapped

transitions to the new machine. If the initial state was split, an initial state is selected

according to Step 5 in CreateInit. CarryBlockRef and In2Out perform housekeeping

operations at the end.

The Infer Implicit Signals block in Figure 55 is performed repeatedly. In every

iteration step, for every state the SetImplicitValue rule (see Figure 56) is called. In the

135

SetImplicitValue block all switching signals with color red are chosen. If there is an

incoming transition which alters the state of the signal, then the transition is used to infer

the new state of the signal. The translator will iterate until none of the signals change

during a run, i.e. the iteration reaches a fixpoint.

Figure 55 The StateSplitting rule

There are two main cases that can change the default interpretation of switching

signal values. The first case is shown in Figure 56. For a given State and switch variable

(called Data in the diagram), if there exists another state (OtherState) with a transition to

State, OtherState may influence the value of Data. Each state has a relation with Data,

and the relation has two attributes: color and value. Color can be either black or red,

black implying that the state is set to the value, while red implying that the value was

inferred. Value can be 0, 1, ?, X, where ‘?’ specifies that the state does not influence data,

while ‘X’ specifies that the state can set the data to either ‘0’ and ‘1’.

136

Figure 56 The SetImplicitValues Rule

In Case? if State’s relation with Data is ‘red’ and value is not ‘X’ and

OtherState’s relation with the Data is ‘?’ then, the inference is that the value of the

current state’s relation with data is also ‘?’. In CaseDifferent if OtherState’s relation with

Data is not ‘?’ and is not the same as State’s relation with Data. In this case the State’s

relation with Data is altered according to the following rules. If State’s relation was ‘?’

then it will take OtherState’s relation. If State’s relation is not the same as OtherState’s

then it will take the value of ‘X’.

Implementation of the reachability analysis (see Figure 51) is based on the mark

and sweep algorithm [102]. The algorithm starts with the init state and marks all the

states it can find. Once all reachable states have been marked the second part traverses

through the states and deletes all the states that have not been marked.

137

Translating Simulink

After all the states of the hybrid automata have been created, the next step is to

identify the algebraic and differential equations for each location (Step 4 of Appendix F).

The various steps in this translation are (1) identification of state variables, (2)

identification of input and output variables (3) discovery of algebraic equations for

dependent variables and (4) discovery of the differential equations for the state variables.

Each integrator block in Simulink is assigned a state variable. Each input port to

the entire system becomes an input variable. Each source block of Simulink also becomes

an input variable. Sink blocks and output ports become output variables. Some

intermediate variables are created for interfacing with Stateflow. These variables depend

on other independent variables in the system.

After all the variables have been identified, the next step is to determine algebraic

equations of dependent variables and differential equations for state variables. These

equations are location dependent, thus for each location the differential and algebraic

equations are inferred using a backward trace algorithm. Starting from the Simulink port

corresponding to the variable a backward trace is used to determine the blocks that

provide input to the block. For each such block the block’s type determines the kind of

sub-expression the block will add to the equation (see Table 1). The back trace yields a

tree with the termination points being state variables, input variables and constants.

138

Table 4 Mapping Simulink blocks to sub expressions

Translating the Tank Level Control example

This section shows how the algorithm described earlier can be used to translate

the Simulink/Stateflow example described in Figure 49. Initially, in state Low, the value

of V3 is undefined while the value of V2 is undefined in state High. In state Too High the

value of V1 and V3 is undefined. After running the Infer Implicit Signals block there are

some implicit values for undefined variables (see Figure 57(b)). For example, in state

Low, the value of V3 can be both 0 and 1, while in state High the value of V2 was set to

1. After we determine the value of the switches in each state we can split the states that

have switches with undefined values. In this example, the state Low will be split into two

while the state Too High will be split into four new states (see Figure 57(c)).

139

Figure 57 Stages of Stateflow splitting

After the states are split, transitions from the original machine need to be

transferred to the new larger machine. The algorithm takes care of mapping the

transitions correctly. After the equivalent machine is created, reachability analysis is

performed. The analysis will reveal that state Too High with value of V1 = 1, V2 = 0 and

V3 = 0 will never occur and it can thus be eliminated. Figure 57 (d) shows the locations

in HSIF. The visualization is provided by HyVisual [100]. After all the discrete locations

have been identified, the continuous time dynamics for each location will be found using

the backward trace algorithm.

Summary

This Chapter described the implementation of an algorithm to convert MSS

models into HSIF models. The MSS models may contain continuous time blocks,

140

Stateflow blocks, and switches, while the resulting HSIF model consists of a hybrid

automaton that exhibits the same dynamic behavior as the original MSS model. This

transformation demonstrates the capabilities of GReAT as a transformation language and

shows how it can be used to solve complex real world problems.

One notable aspect of this implementation is that external support was not

required for the implementation of the algorithm. Also all the different algorithms and

graph manipulations required by the algorithms such as: state splitting, state space cross

product, back trace of the Simulink graph, were achievable and easy to implement in

GReAT.

During the development of the solution, the strengths and weaknesses of GReAT

were identified. The strengths are:

1. Specification of structural manipulations was very easy and intuitive

with GReAT.

2. There were fewer errors in the specification and debugging and finding

the error was easier because of a visual representation.

3. Understanding the implementation after a long break (2 weeks to a

month) was easier than it is in a regular programming language such as

C++

4. Having a hierarchical representation helped significantly in managing

the complexity of such large and complex transformation.

Some of the weaknesses of GReAT were:

141

1. There is no elegant way to parse string attributes and complex code

needs to be written in the attribute mapping area.

2. Creation of a number of objects cannot be visually specified based on

the information provided in attributes. Users need to write attribute

mapping code to achieve this.

3. Since the transformation language is similar to functional programming,

the entire required context need to be carried along and passed to all the

intermediate rules.

Conclusion

The conclusion that can be drawn from this Chapter is: GReAT language is

suitable for model-to-model transformations and it can be used to specify and

automatically implement large complex models. It allows the user to write the

transformation without worrying about implementation details such as accessing and

manipulation models, executions of the pattern matcher and other similar issues. GRE

and GRD provide an easy way to prototype and debug the transformations while the CG

provides an efficient implementation once the transformation algorithm is fixed. The

intuitive feeling is that efficiency of the developer is enhanced with the help of GReAT

and the associated tools.

142

CHAPTER VII

RESULTS, CONCLUSIONS AND FUTURE WORK

Results

This section will evaluate GReAT and its tool suite with respect to the

requirements defined in Chapter III. The evaluation should lead to the validation or the

negation of the hypothesis. First, the requirements are revisited to see whether they were

satisfied by GReAT.

Requirement 1

“The transformation language should have a sub-language for the specification of graph

domains.”

GReAT uses UML class diagrams as the sub-language for the specification of

graph domains.

Requirement 2

“The domain specification language should use a well know language or be based on

one.”

UML class diagrams is a well known language which has been standardized [3]

Requirement 3

“The transformation should use the type information from the domains to strongly type

the transformations.”

143

The pattern specification of GReAT uses the type information from class

diagrams to make pattern specification and transformation strongly typed.

Requirement 4

“Often rewriting graphs belonging to one domain into graphs that belong to another

domain is required.

a. The language should support the specification of multiple domains.

b. It should have constructs that allow users to write rewritings where the

input and output graphs are disjoint and do not even belong to the same

domain.”

In GReAT, any number of UML packages can be used. Each package contains a

set of class diagrams that represent a domain. The user can specify new packages that are

temporary and used only during the transformation. These packages can associate objects

belonging to different packages. These temporary packages help integrate the

independent packages only for the transformation. Thus, a graph rewriting problem can

be treated as a transformation where the input graph is concentrated in one part of the

domain while the output graph will be concentrated in a different part.

Requirement 5

“The computational power of the transformation language should be comparable to a

Turing machine to ensure that any transformation conceivable can be handled by it.”

As mentioned in Chapter III, a Turing Machine (TM) is a represented as a 5-tuple

T = (Q, Σ, Γ, q0, δ), where

Q = {q0, q1,…, qm} is a finite set of states

144

Σ = {s1, s2, …, sn} is a finite set of symbols called the input alphabet

Γ is a super set of Σ is a finite set of symbols called tape symbols

q0 is an element of Q is the initial state

},,{}){(}){(}){(: SLRhQQ ×∆Γ×→ΑΓ× UUUδ is a transition function

Here denotes a blank and R, L and S denote move the head right, left and do

not move it, respectively and h denotes the halt state. The tape symbol on the right side of

the transition function is written to the current cell.

∆

To prove that GReAT is Turing complete it needs to be established that any

Turing machine can be converted to a GReAT program. The TM can be emulated in

GReAT using a Domain for representing TMs.

TapeCell

Value : String

TuringMachine CurrentState

Value : String
CurrentHeadPosition

0..*

right
0..*

lef t 0..*

1

pointsAt
1

11

Figure 58 The domain of Turing machines

Figure 58 shows a domain that can store the necessary information required for

implementing a TM. In the figure we see that a TuringMachine can contain an infinite

number of TapeCells. These cells are organized such that each cell has a left cell and a

right cell with the constraint that disallows a circular tape. The TuringMachine also

contains one instance of the CurrentState object that stores the current state of the

145

machine. The CurrentHeadPosition object has an association to a TapeCell which

describes the head position.

TM
In Out

Initialize

In Out
H

RunMachine
Out

Figure 59 The top-level rule of Turing machine

The transition function can be represented as a GReAT transformation. At the top

level (see Figure 59) the input Turing Machine is initialized with the CurrentState.Value

field equal to the initial state. Then the machine is run till it reaches the halt state.

H

In

Q1
Q2
Qn

H

CurrentState?

OutIn

In Out

Q1

In Out

Q2

In Out

Qn

Figure 60 Internals of RunMachine

146

Figure 60 shows the RunMachine Block. First, a Test is used to determine the

current state. Based on the current state, the block corresponding to it is used. In the

block, action is taken and the current state is changed. Then the TM is passed out from

the out port which is fed back to RunMachine (see Figure 59). If the current state is the

halt state then the output goes to H output port which then terminates the program.

In

In Out

ActionForQ1S1

In
S1
S2
Sn

TestTapeSymbol

In Out

ActionForQ1S2

In Out

ActionForQ1Sn

Out

Figure 61 Inside Q1 block, choosing action for current state and symbol

Inside the block for a particular state there is a test for checking the current

symbol. Based on the current symbol, a rule is taken where the action for the state will be

taken. For example, in the block Q1 (see Figure 61) the test chooses between different

actions. Within an action (see Figure 62) the value of the current tape cell can be

changed, a new state specified and the new position of the tape head can be changed to

either the left or the right.

147

CurrentHeadPosition

Out

In

CurrentState

Value : String
TuringMachine

TapeCell

Value : String

NewTapeCell

Value : String

TapeCell.Value = <new value>

CurrentState,Value = <new state>

pintsAt

right left

pointsAt

Figure 62 Action taken for a particular State, symbol pair.

Requirement 6

“The language should be capable of transforming/rewriting any number of

graph/domain pair, not just two. There could be n input graphs and m output graphs and

these graphs can belong to any number of domains.”

In GReAT any number of domains can be used and the transformation can work

with an arbitrary number of input and output graphs. For example, the

Simulink/Stateflow to HSIF translation works on three graphs belonging to different

domains. The input graph is the Simulink/Stateflow graph. The Stateflow part is

converted to an intermediate state machine representation called StateChart. Finally the

output produced is a graph that belongs to the HSIF domain.

148

Requirement 7

“The language focus should be on constructs that allow users to write efficient

transformations.”

Special attention was paid to the performance of the language constructs. As

described in Chapter IV Section on optimized transformations, three language constructs

have been described followed by details on how they can be used for building efficient

transformations. The three techniques are (1) Typed Patterns, (2) Pivoted Patterns and (3)

Reusing previously found objects.

Requirement 8

“The language should have efficient implementations of its programming constructs.

The implementation should be comparable to its equivalent hand written code.”

Efficient algorithms and partial evaluation of different parts were used and the

two primary methods for building efficient implementations of the language constructs.

Appendix A, Appendix B and Appendix C are algorithms for efficient pattern matching

using the notion of pivoted patterns. The CG, as described in Chapter V performs a

partial evaluation of the generic pattern matching algorithms making the time constant

much smaller.

Requirement 9

“The language should have a formal mathematical foundation that can facilitate the

verification of transformations by theorem proving.”

Semantics of GReAT were defined in Object Z, a formal mathematical language

used for expressing semantics (see Appendix D). This gives GReAT a strong

149

mathematical base. Given a transformation in GReAT, it can be converted into a set of

operations and functions on the input and output domains. Proofs can then be written

based on these transformations. Since the granularity of the transformations is much

coarser than statements of a programming language, larger proofs should be possible.

As a demonstration of this capability a simple transformation problem is used.

The transformation is required to produce an isomorphic copy of given graph. For the

sake of simplicity, a single domain is used. The domain has one type of vertex SV and

one type of edge SE. A temporary domain with one cross-link TempE from SV to SV is

used. As shown in Figure 63 the transformation consists of three rules. The first rule

CopyVertices creates a new vertex for every vertex in the graph and creates a TempE

edge between them. The second rule CopyEdges creates the edges corresponding to the

original graph, and the third rule, DeleteOld deletes the old graph.

SimpleGraph

SV

In

equivSV

Out

src dstTempEequivSVSV

SimpleGraph

OutIn

src
0..*

dstTempE

ScrEquivSVScrSV

dstSV

SimpleGraph

DstequivSV

OutIn

src

dst

SE

src dstTempE

src

dst

SE

src dstTempE

Copy Vertices Copy Edges Delete Old

Inter Inter

Figure 63 Transformation to make isomorphic copy of graph

In order to prove that the transformation actually performs an isomorphism, a

formal proof is required. First we need to define graphs, their domains and the written the

properties of the transformations.

150

Def 1: We call a set G a graph if

EeTteETypeTEType:E
VvTtvVTypeTVType:V

EeVv Dst(e)VDst:E
EeVv Src(e)VSrc:E

ETypeVTypeSrc, Dst
,TTEVETypeVTypeDstSrcTTEVG

EE

VV

EVEV

∈∈=→
∈∈=→

∈∈=→
∈∈=→

=

 allfor)()5(
 allfor)()4(

 allfor (3)
 allfor (2)

 type.edge and pe vertex tyn vertex,destinatio vertex,source called
 ,, functions somefor andly respective typesedge and esvertex typ

 edges vertices,called ,, sets somefor ,,,,,,, (1)

Q

Q

Q

Q

Def 2: We call a graph I an intermediate graph if

 },{ (3)
 (2)

 ,,,,,,, (1)

TempESET
{SV}T

ETypeVTypeDstSrcTTEVI

E

V

EV

=
=

=

Def 3: We define as the class of all intermediate graphs Ι

Def 4: We call an intermediate graph S a simple graph if

EeSEeEType
ETypeVTypeDstSrcTTEVS EV

∈=

=

 allfor)()2(
 ,,,,,,, (1)

Def 5: We define as the class of all simple graphs Σ

151

Def 6: We define the operation Ι→Σes:CopyVertic where

()()()
()
()()
()()
()()FVvevEEe

FVvevVVv
FVvevVv

FVvevveDstveSrcTempEeEType
VVvEEeVv

VVEEVFV
ETypeETypeVTypeVTypeDstDstSrcSrc

EEVV
,EType,VType,Dst,Src,T,T,EVI

,EType,VType,Dst,Src,T,T,EVS
I)es(SCopyVertic

outtininoutt

outtininoutout

outtininin

outtinouttintt

inoutoutinouttinin

inoutinoutin

inoutinoutinoutinout

inoutinout

outoutoutoutEVoutoutout

ininininEVininin

outin

∈∃−∈∀
∈∃−∈∀

∈∃∈∀
∈↔=∧=∧=

−∈∀−∈∀∈∀
−×−×⊆∃

⊇∧⊇∧⊇∧⊇
⊇∧⊇

=

=

=

),,(!)10(
),,(!)9(

),,(!)8(
),,()()()(

)7(
)()()6(

)5(
 (4)
 (3)

 (2)
graphs simple allfor)1(

()

Def 7: We define the operation Ι→Ι CopyEdges:

()

()

()()

()

()()FEeeeeEEe
eDsteDsteDsteSrc

eSrceDsteSrceSrc
TempEeETypeeEType
SEeETypeeEType

FEeeee

EEeEeee
FEeeeeeDsteDst

eDsteSrcSEeEType
EEe

eSrceDsteSrceSrc
TempEeETypeeETypeSEeEType

Eeee

EEEFE

ETypeETypeVTypeVTypeDstDstSrcSrc
EEVV

,EType,VType,Dst,Src,T,T,EVI

,EType,VType,Dst,Src,T,T,EVI
I)(IC

outtdtsininoutout

tdouttsout

tdintsin

tdts

outin

outtdtsin

inoutoutintdtsin

outtdtsintdout

tsoutout
inoutout

tdintsin

tdtsin
intdtsin

inoutin

inoutinoutinoutinout

inoutinout

outoutoutoutEVoutoutout

ininininEVininin

outin

∈∃−∈∀

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=∧=
∧=∧=

∧==
∧==

→∈

−∈∀∈∀

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈∧=
∧=∧=

−∈∃

→⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∧=

∧==∧=
∈∀

−×⊆∃

⊇∧⊇∧⊇∧⊇
⊇∧=

=

=

=

),,,(!)9(
)()()()(

)()()()(
)()(
)()(

),,,(

,,)8(
),,,()()(
)()()(

!

)()()()(
)()()(

,,)7(

)((6)

)5(
 (4)
 (3)

 (2)
and graphs teintermedia allfor opyEdges)1(

3

152

Def 8: We define the operation Σ→Ι DeleteOld: as

()
()()()
()
() outinoutininin

in

outintintint

in

outoutoutoutEVoutoutout

ininininEVininin

outin

EeVeDsteSrcSEeEType
E

VvTempEeETypeveSrcEe
V

,EType,VType,Dst,Src,T,T,EVS

,EType,VType,Dst,Src,T,T,EVI
S)IDeleteOld(

∈↔∈∧=
∈∀

∉↔=∧=∈∃
∈∀

=

=

=

)(),()(
e)5(

)()(
v (4)

 (3)

 (2)
and graphs allfor)1(

in

in

()

()

Def 9: We define the operation Σ→Σ Copy:Isomorphic as

esCopyVerticCopyEdgesDeleteOld oo

Theorem 1: For all and are isomorphic ,Σ∈inG G)(GCopyIsomorphic

Proof:

outoutoutoutEVoutout

outi

iiiiEViiii

iiiiEViiiin

ininininEVininin

,EType,VType,Dst,Src,T,T,EV
GGCopyIsomorphicGDeleteOld

,EType,VType,Dst,Src,T,T,EVGGCopyEdges

,EType,VType,Dst,Src,T,T,EVGGesCopyVertic

,EType,VType,Dst,Src,T,T,EVG

=

==

==

==

=

)()(
)(

)(

and Let

2

22222221

1111111

Lemma 1: iniout VVV −= 1

Proof:

1. For all v element of Vout, v is an element of Vi2 since Vi2 is a superset of Vout and v

is an element of Vi1 since Vi1 is equal to Vi2 and

2. For all v element of Vout v is not an element of Vin since for all vin elements of Vin

there exists a temporary edge such that vin is the source of the edge (Def 6: (8))

and by Def 8: (4) vertices that are the source of a temporary edge cannot be an

element of Vout.

153

3. For all v element of Vi1 – Vin, v is not the source of a temporary edge (Def 6: (7))

and thus is an element of Vout (Def 8: (4)).

Def 10: We define a relation s outin VVIFV →: a

() ()(FVvevIFVvv outtinoutin)∈∃↔∈),,(e),(t

We claim that IFV is a bijection. First recall that by Lemma 1, Vout= Vi1-Vin. By

Def 6: (8), for each inin Vv ∈ there is a unique outiniout VVVv =−∈ 1 with

. By Def 6: (9), for each (IFVvv outin ∈),() outiniout VVVv =−∈ 1 there exists a unique

 with (. Thus, IFV is a 1-1 correspondence, i.e., a bijection. inin Vv ∈)

}

IFVvv outin ∈),(

Lemma 2:)(|{ 11 TempEeETypeEeEE iiin =∈−=

Proof:

1. For all e element of Ein, e is an element of Ei1 since Ei1 is a superset of Ein.

2. For all e element of Ein e is not an element of })(|{ 1 TempEeETypeEe i =∈ since

Ein is a simple graph and simple graphs cannot have temporary edges.

3. For all e element of })(|{ 11 TempEeETypeEeE ii =∈− , e is a SE and thus in Ein

(Def 6: (7) and (10)).

Lemma 3: 12 iiout EEE −=

Proof:

1. For all e element of Eout, e is an element of Ei2 since Ei2 is a superset of Eout.

154

2. For all e element of Eout, e is not an element of Ei1 since for all ei1 of Ei1 either the

Src or Dst or both is the Src of temporary edges (Def 6: (7) and (8)) and vertices

that are the Src of a temporary edge are not part of Vout.

3. For all e element of Ei2 – Ei1, e is a SE (Def 7: (7)). Src and Dst of e are Dst of

temporary vertices (Def 7: (7)). Thus, e is neither the Src nor the Dst of a

temporary edge (Def 6: (7)) and thus is an element of Eout (Def 8: (5)).

Def 11: We define a function s outin EEIFE →: a

() ()()FEeeeeeeIFEee outtdtsintdtsoutin ∈∃↔∈),,,(,),(

We claim that IFE is a bijection. First recall that by Lemma 3, 12 iiout EEE −= ,

and by Lemma 2, })(|{1 TempEeETypeeEE iin =−= . By Def 7: (7), for each

iniin ETempEeETypeeEe ==−∈ })(|{1 there is a unique outiiout EEEe =−∈ 12 with

. By Def 7: (7), (8) and (9), for each (IFEee outin ∈),() outiiout EEEe =−∈ 12 there is a

unique iniin ETempEeETypeeEe ==−∈ })(|{1 with ()IFEee outin ∈),(. Thus IFE is a 1-1

correspondence, i.e., a bijection.

We claim that IFV and IFE are edge preserving. By Def 6: (7), for all vertices v in

Vin there exists a temporary edge with v as the source. By Def 7: (8), for all simple edges

iniin ETempEeETypeeEe ==−∈ })(|{1 there exists a unique simple edge with the

source and destination vertices being the destination of temporary edges of the

corresponding source and destination vertices. implies that outin eeIFE =)(

155

)())((outin eSrceSrcIFV = and)())((outin eDsteDstIFV = . Thus IFE and IFV are edge

preserving.

Thus, for all and are isomorphic. ,Σ∈inG G)(GCopyIsomorphic

This example transformation and the accompanying proof show that GReAT can

be used for specifying transformations and have a formal verification of the properties of

interest. For larger and more complex transformations the definitions can get more

complicated. The positive side of the transformation language is that it is conceivable to

write a translator that can convert the transformation specification into mathematical

definitions. The theorem proving can then be done either by hand or using different

heuristics.

Revisiting the Research Hypothesis and Completion Criteria

“A Metamodel based transformation language using graph rewriting and

transformations that support multiple graphs (that may belong to different domains) with

an efficient implementation is suitable for the specification of model transformers. Such a

language should help shorten the time taken to develop model transformers and allow for

formal proof of correctness of the transformations.”

GReAT is a graph transformation based model-to-model transformation language

that supports multiple input and output graphs. In the Simulink/Stateflow transformation

the need for transformation that uses more than two domains was seen. Thus, the

requirement for multiple domains has been justified. The research hypothesis claimed

that a graph transformation based language with efficient implementation would help

speedup the time taken to develop model transformations and would allow formal

156

theorem proving. The theorem proving aspect has been demonstrated with the help of an

example.

The two completion criteria were (1) expressiveness and (2) usefulness of the

language. Expressiveness is measured in two dimensions. The first metric is the class of

problem the language can solve. For instance, if the language is Turing complete then it

can compute solutions to all problems that a Turing machine can solve. The second

metric is whether it can by used to solve real-world problems. It was found that GReAT

satisfies both these requirements. It has been proven to be Turing complete and thus as

powerful as any other programming language. More importantly, both challenge

problems and a host of other real-world problems were solved using GReAT,

demonstrating that it is actually practically usable.

The second completion criterion was the usefulness of the language. This is the

measure of the effectiveness of expressing the class of problems it targeted. This should

also give us some insight into the question of whether such a language would provide a

speedup over other conventional approaches. From user experience (discussed in the

summary section of Chapter VI) it was seen that GReAT offers some advantages over

other approaches such as (1) It was easy of specifying structural manipulation, (2) Errors

were caught early and were fewer, (3) Manageability of the complexity simpler with

hierarchical decomposition and (4) Maintaining and enhancing the transformations was

more convenient because understanding previous work was more intuitive. These

observations help us believe that the language would provide a speedup. However, a lot

of empirical data over many projects and people is required to establish such a claim.

Some preliminary work has been done in this field to gather such data.

157

Table 5 shows a compilation of the transformation specified in GReAT, the

complexity of the transformation in GReAT, the time taken and the lines of code it was

or would have been in a traditional language. The table provides some insights into how

the transformations relate to hand code. If we use some code time metrics to speculate the

time it would have taken to write the code, we can get an approximate idea of the

speedup achieved.

Table 5 Compilation of different projects developed in GReAT

GReAT Hand
code

Problems Primitive/
Compound
Rules

Time
(man-
hours)

Est.
LOC

Mark and sweep
algorithm on Finite State
Machine (FSM)

7/2 ~2 ~100

Hierarchical Data Flow
(HDF) to Flat Data Flow
(FDF)

11/3 ~3 ~200

Hierarchical Concurrent
State Machine (HCSM)
to Finite State Machine
(FSM)

21/5 ~8 ~500

Simulink Stateflow to C
code 70/50 ~25 ~2500

Matlab Simulink/
Stateflow to Hybrid
System

154/43 ~50 ~5000

Another technique for establishing the merits of GReAT is to show the first class

entities of the language and show how and why they may help provide a speedup. The list

of new entities that have been made first class objects in GReAT are

1. A powerful pattern specification language which has elevated the

specification of patterns to be matched as a first class entity. The built-

158

in pattern matching algorithms allow the users to simple specify the

pattern and not have to worry about how to match it.

2. Graph transformation language that allows users to specify

manipulation of the graphs in an intuitive manner.

3. Heterogeneous metamodel that allows users to specify all the temporary

data structures in the same formalism as the source and target. It

elevates temporary information to first class entities.

4. Controlled transformations provide the user with the facility to

sequence the transformations, use test cases and other programming

constructs. The language fuses both declarative and imperative

constructs in a manner that is intuitive for users and helps them be more

efficient.

The above mentioned list of features describes the various language components

that help make the language suitable and useful for specifying model-to-model

transformations.

Conclusion

Computing languages continue to evolve toward higher levels of abstraction. The

journey has taken programming languages from machine code to state of the art

languages for component-oriented systems. A survey of modelling languages and looking

into future trends in software engineering revealed a trend towards domain-specific

modelling languages that may have both textual and graphical notation. Earlier attempts

at CASE tools and domain-specific languages were studied to identify the reasons for

limited success. The conclusion was that developing custom domain-specific languages

159

suffered from the problems of (1) high cost, (2) lack of standardization and (3)

robustness.

It was argued that these problems can be avoided by the using a framework

approach to developing domain-specific languages. A set of requirements for such a

framework were identified. The areas of Model Integrated Computing (MIC) and

Generative Programming (GP) were studied where an attempt to make such a framework

has already been made. The conclusion of the search was that MIC-based frameworks

were more suitable for the specification of domain-specific languages. Thus different

MIC based tools were evaluated to see whether they fit the requirements. All tools that

were surveyed lacked a formal language for specifying the dynamic semantics of the

domain-specific languages. This step was usually achieved by writing a model interpreter

or compiler that implemented the semantics of translating the models to a known

semantic framework.

This deficiency of MIC frameworks was identified as the key limitation and

various approaches to solve the problem were studied. Since models can be represented

as graphs, the field of graph grammar and transformation was studied. Graph

transformations seem to be ideal for a model transformation language. Nevertheless,

these approaches could not be used directly for model-to-model transformations, and this

posed some interesting challenges. These challenges were as follows: (1) multiple graph

domains may be involved in the transformation, (2) there is a need for specification and

use of links that cross domains, and (3) support for sequencing the transformation rules

are required. Due to these requirements previous approaches could not be directly used.

160

Based on the literature survey, a research hypothesis was made that argued that a

graph transformation based language would be suitable for model-to-model

transformations. The requirements for such a language were laid out and the completion

criteria were defined.

Graph Rewriting and Transformations (GReAT): a graphical language that

addressed these requirements was introduced. GReAT is based on the use of UML class

diagrams (and OCL) for representing the domains of the transformations (and structural

integrity constraints over those domains). Transformations over multiple domains were

supported, and cross-links among domains were defined at the metamodeling level.

The transformation language itself was divided into three sub languages: (1)

Pattern Specification language, (2) Graph Rewriting/Transformation language and (3) the

language for Controlled Graph Rewriting and Transformation. The Pattern Specification

language introduced a concise way to represent fairly complex graphs, and various

pattern matching algorithms were also developed. The Graph Rewriting/Transformation

language was used to define graph transformation steps. Pattern graphs were embellished

with actions like new, bind, and delete to express actions within a transformation. Pre-

conditions for the transformations were captured in the form of a guard, and attribute

mappings were used to modify the values of attributes. The language for Controlled

Graph Rewriting and Transformation defined high-level, hierarchical control structures

for rule sequencing, modularization, and branching.

In order to realize GReAT as a usable language, a concrete syntax was given to it.

The concrete syntax defined the concrete entities and their visualizations. An abstract

syntax for GReAT was also designed with an XML representation, thus isolating the

161

tools from the concrete syntax. An execution engine called Graph Rewriting Engine

(GRE) was developed for GReAT. The GRE could read a GReAT specification and

execute it on a given input to produce output. A debugger called Graph Rewriting

Debugger (GRD) was also developed on top of the engine to allow users to single step

through the GReAT transformations. The debugger also provided visualization front-end

to drive the debugger and visualize the objects at different times. The GRE and GRD are

good for prototyping the verifying the correctness of the transformation but the execution

speeds is not acceptable for deployment of the transformations. For this reason a Code

Generator (CG) was also developed for GReAT. CG converts a GReAT specification into

efficient C++ code that can be compiled to make a stand alone transformer.

Apart from all the execution engines, an IDE was also developed around GReAT.

The IDE consisted of an editor for creating GReAT transformations and a suite of tools to

help the user in this process. The tools accompanying the IDE are divided into three

different categories (1) Development tools that help users build models, (2)

Transformation tools that convert the front-end concrete syntax to the abstract

representations and (3) Invocation tools that invoke GRE, GRD and CG from the

environment and provide feedback.

A case study was also presented where GReAT was used to solve the translation

problem from Simulink/Stateflow to HSIF. This translation was quite complex and

required different algorithms that performed various graph traversals and manipulations.

GReAT was able to specify all the components of the transformations and thus

demonstrate that GReAT can be used to solve large real-world problems.

162

The results section evaluated whether GReAT successfully satisfies the

requirements that were laid out in the proposal and if it was able to uphold the

hypothesis. The conclusions were quite convincing as GReAT was able to satisfy all the

requirements. Evaluation of the expressiveness of GReAT was demonstrated with the

help of a Turing completeness proof and the example problems solved in it. The

usefulness issue was a bit difficult as a lot of empirical data over large periods of time are

required. The usefulness was demonstrated with the help of user experience, some

empirical data and a listing of all the first class entities in GReAT that would help the

translator developer. A simple transformation was used as an example to demonstrate that

GReAT translations can be used to write formal proofs of correctness.

Future Work

GReAT is not the end but the beginning of a research direction. Future research in

this area is divided into two main categories. First is the further development of GReAT

into a mature graph transformation language that can be used not only in MDA or model-

to-model transformation but also for the manipulation of typed multi-graphs. Data in

various storage formats such as XML, MOF and databases can be considered as graphs,

thus widening the scope and impact of GReAT. The current implementation of GReAT is

a similar to stateless functional languages. One short-term goal is to increase the usability

of the language by investigating object oriented and component oriented constructs and

evaluating how they may be used in the transformation language.

The second research direction is that of using GReAT, a formal language as the

starting point for “correct by construction” languages where correctness properties are

guaranteed on every sentence of the language. For example, a transformation language

163

that guarantees not to violate the structural properties of a graph can be called “structure

preserving”. The next step will be a transformation language that will be “static semantics

preserving”, and eventually it may be possible to develop transformations that are

“property preserving”. That is, transformations written in the language are guaranteed to

preserve graph properties or other domain specific properties.

The long term goal of the research is to develop a framework that enables the

rapid development and deployment of robust domain-specific languages. Such a

framework will need to support the specification and automated implementation of the

abstract syntax, visualization, static semantics and dynamic semantics of a new language

with robustness guarantees in a short delivery time.

164

APPENDIX A.

ALGORITHM FOR SINGLE CARDINALITY PATTERN MATCHING

Function Name : PatternMatcher
Inputs : 1. Pattern Graph pattern
 2. Match p_match (a partial Match)
Outputs : 1. List of Matches matches

matches = PatternMatcher (pattern, p_match)
{
 foreach pattern edge with valid binding for both Src and Dst vert
 { if(corresponding graph edge doesn’t exists)
 { return an empty match list
 Bind pattern and host graph edge.

 Add binding to p_match
 Delete the pattern edge from the pattern
 }
 }
 Edge edge = get pattern edge with exactly one vertex bound
 if(edge exists)
 { vertices = host graph vertices adjacent to bound vertex
 make a copy of pater in new_pattern
 Delete edge from new_pattern
 foreach vertex v in vertices)
 { new_match = p_match + new binding(unbound pattern
 vertex, vertex)
 ret_match = PatternMatcher(new_pattern, graph,

 new_match)
 Add ret_match to matches
 }
 Return matches
 }

 If(all patern edges are bound)
 { Add p_match to matches
 Return matches
 }
 else
 Return empty list
}

165

APPENDIX B.

ALGORITHM FOR FIXED CARDINALITY PATTERN MATCHING

Function Name : PatternMatcher
Inputs : 1. Pattern Graph pattern
 2. Match p_match (a partial Match)
Outputs : 1. List of Packects matches

matches = PatternMatcher (pattern, p_match)
{ new_pattern = copy of Pattern.
foreach pattern edge with both Src and Dst vertices bound
{ if(corresponding edge doesn’t exists between host graph vertices)
 return false.
 Add edge binding to p_match
 Delete edge from new_pattern.
}

Edge edge = pattern edge with one vertex bound to host graph
if(edge exists)
{ Delete edge from new_pattern.
 foreach vertex v in bound vertices of edge
 { peer_vertices[v] = vertices adjacent to vetrex bound to v
 }
 Intersect all the peer_vertices to form new list peer
 If(cardinality of peer Ci >= Cd cardinality of corresponding
pattern vertex)
 { For(Each combination of Cd from Ci)
 { peer_c is the unique combination
 new_match = p_match + new binding(pattern vertex,
peer_c)
 ret_match = PatternMatcher(new_pattern, new_match)
 Add ret_matches to Matches
 }
 Return matches.
 }
}

If(all patern matches are bound)
{ Add p_match to matches.
 return matches.
}
else
 return enpty list.
}
}

166

APPENDIX C.

ALGORITHM FOR VARIABLE CARDINALITY PATTERN MATCHING

Before defining the algorithm for Variable cardinality pattern matching the

definitions in Chapter VI need to be extended with some new definitions.

Vertices Adjacency Table

Vertices Adjacency Table: A Vertices Adjacency Table vat is an ordered pair of a

pattern vertex and a set of vertices adjacency.

vat = (pv, VA}, where VA = {va | va is a vertices adjacency},

VAT Functions

GetAdjVertices: AVVVVVPEPVVAT →×××

VA),(AVV)V,(pe, vaVA,va|AVV
),,,(,,,,

pvvatreturn
VpepvvaticesGetAdjVertVVVPEpePVpvVATvat

=∧=∈
∈∀∈∀∈∀∈∀

Some Additional Functions

CreateVerticesAdjacencyTablesForPatternVertex : PV VAT

return vat
VA) (pv, vat

above} described |{

above} described V|{V va

}pv with bindcan and V oadjacent t are that icesgraph verthost ofset a is v|(vV

pv oadjacent t pv
)(,1,

pv)} with bindcan that icesgraph verthost (|{
)(,

adjadj

adjadj

adj

=
∀=

∀=

=

∀
=≥≥=∀

∈=
=∈∀

vavaVA

pvyCardinalitccrCV
Vvvn

pvxtternVerteeForEachPaCreateTablPVpv

r
n

167

Variable Cardinality Algorithm

MatchDynamic : M ofset M HG PG →××

if end
matches ofset return tommatch add

then
 bound are edges and rticespattern ve all if else

e)m,hg,d(pg,icNoneBounMatchDynam
then

φsBound(m))oneVerticeEdgesWithN(e if else
if end

e)m,hg,(pg,icDstBoundMatchDynam
else

e)m,hg,(pg,icSrcBoundMatchDynam
 then

bound is Src(e) if
then

φxBound(m))ingleVerteEdgesWithS (e if else
e) m,hg,d(pg,icBothBounMatchDynam

then
φe if

Bound(m)thVerticesEdgeWithBo e
m)hg,ic(pg,MatchDynam M,mHG,hgPG,pg

≠=

≠=

≠
=

=∈∀∈∀∈∀

MatchDynamicBothBound: M ofset PE M HG PG →×××

168

return
EB)(VB,m whereEB from eb delete

m)hg,ic(pg,MatchDynam call
EB)(VB m whereEB toeb add

E) all ofunoin (pe,eb
falsereturn Then

v)(vSrc(e) E,e | Edges(hg)E If
each vFor

each vFor
))(,(4
))(,(4

pe)m,hg,d(pg,icBothBounMatchDynamPE,peM,mHG,hgPG,pg

DstSrc

Dst

Src

=

<=
=

=∧=∈∀⊂¬∃
∈

∈
=
=

=∈∀∈∀∈∀∈∀

eDst
V

V
peDstmPatternGetHostV
peSrcmPatternGetHostV

Dst

Src

Dst

Src

MatchDynamicSrcBound: M ofset PE M HG PG →×××

EB)(VB,m whereVB from vddelete
EB)(VB,m whereEB from eb delete

m) hg, ic(pg,MatchDynam
EB)(VB,m whereVB to vbadd
EB)(VB,m whereEB toeb add

)V(Dst(pe), vb
)E(pe,eb

}),,),(,(|{E

V if ,VVV where),Vpe,Src(pe),ices(vat,GetAdjVertVeach For
)Vpe,Src(pe),ices(vat,GetAdjVertV

Veach for
Src(pe))ttern(m,GetHost4Pa

pe)m,hg,(pg,icSrcBoundMatchDynam PE,pe M,mHG,hgPG,pg

iDst

Src2Dst

Src2Dst

iDstSrcijjjDst

iiDst

i

=
=

=
=

=
=

∈∧∈==

⊄⊆⊂=
=

⊆
=

=∈∀∈∀∈∀∈∀

jDstdstSrcSrcdstSrc

jDst

Src

Src

VvVvvvpeTypenameee

V

V
V

MatchDynamicDstBound: M ofset PE M HG PG →×××

169

EB)(VB,m whereVB from vddelete
EB)(VB,m whereEB from eb delete

m) hg, ic(pg,MatchDynam
EB)(VB,m whereVB to vbadd
EB)(VB,m whereEB toeb add

)V(Src(pe), vb
)E(pe,eb

}),,),(,(|{E

V if ,VVV where),Vpe,Dst(pe),ices(vat,GetAdjVertVeach For
)Vpe,Dst(pe),ices(vat,GetAdjVertV

Veach for
Dst(pe))ttern(m,GetHost4Pa

pe)m,hg,(pg,icDstBoundMatchDynam PE,pe M,mHG,hgPG,pg

iSrc

Dst2Src

Dst2Src

SrcSrcijjjSrc

iiSrc

i

=
=

=
=

=
=

∈∧∈==

⊄⊆⊂=
=

⊆
=

=∈∀∈∀∈∀∈∀

DstdstjSrcSrcdstSrc

jSrc

Dstc

Dst

VvVvvvpeTypenameee

V

V
V

170

APPENDIX D.

FORMAL SEMANTICS OF GREAT

A formal specification of the GReAT execution semantics is described in this

Chapter. The Object-Z notation [101] has been used for the specification. The

specification starts with the definition of a graph.

Vertices and edges both have a type associated with them. These types must

conform to the respective metamodels of the graphs. Both host graphs and pattern graphs

are defined by the same data structure. The additional attributes of the pattern graph, like

actions are captured separately using maps. The MATCH class is a data structure that

associates pattern graph elements with host graph elements. (The host graph is the graph

in which we search for a match.) It contains a partial function from pattern vertices to

host vertices and another partial function that maps pattern edges to host edges.

171

Apart from the pattern graph, a rule also contains ports that allow it to interface

with other rules. A port is simply used to connect with another rule. A non-empty set of

ports form an interface. Each rule must contain an input and an output interface. The

interface is used to pass along host graph elements. These elements are mapped to the

ports of an interface to form a packet. A PACKET contains a partial function that maps

ports to host vertices.

The base class for all elements in the GReAT language that describes some

operation on the graph is called UNIT. A UNIT consists of (1) a (reference to the) host

172

graph, (2) an input interface (3) an output interface, (4) a set of input packets, and (4) a

set of output packets. UNIT is then specialized into PRIMITIVE_UNIT and

COMPOUND_UNIT. PRIMITIVE_UNIT is specialized into RULE and CASE. These

classes form the atomic building blocks of the GReAT language. The RULE performs an

elementary transformation operation while CASE is used to check for matches

(alternatives).

173

PRIMITIVE_UNIT contains a pattern graph, binding of input ports to pattern

elements and binding of pattern elements to output ports. It also contains many operations

that are used by RULE and CASE. The most important operation is PatternMatcher. This

174

operation takes as input a partial match of the pattern on the host graph and generates the

set of all possible complete matches between the pattern and the host graph. This matcher

algorithm implements the core activity performed during the execution of GReAT

programs. The other operations include: MakeInitialPartialMatch, that takes a single

input packet and converts it into a partial match using the input binding information, and

EvaluateGuard that is used to evaluate an OCL expression on the matches returned by the

matcher. All matches that fail the guard are discarded. For the sake of brevity the

EvaluateGuard function is described in English.

A CASE is the simplest of all GReAT components. The Execute function of the

case takes each input packet and calls the pattern matcher. The matches returned by the

pattern matcher are then filtered using the guard expression. All successful matches are

again packaged to form the output packets. The CASE is used only within a TEST

component. TEST and CASE are used together, to form a conditional execution and

branching construct.

The execution of a RULE is similar to that of a CASE. The exception is that in a

RULE, after the matches are filtered using the guard, the matches are used to perform

actions on the host graph. These actions can create and/or delete vertices and edges. After

these actions are performed, the attribute mapping specification is used by

PerformAttributeMapping operation to fill in and/or modify the attributes of graph

175

vertices and edges. For the sake of brevity, PerformAttributeMapping is described in

English.

Sequential execution of expressions is expressed using the SEQUENCE class.

This class maps ports of one UNIT to ports of another UNIT. SEQUENCE is usually

used to map from the output interface of one UNIT to the input interface of another

176

UNIT. However, it is seen that in compound units SEQUENCE is also used to map the

input interface of the compound unit to the input interface of contained units.

177

TEST is a UNIT that provides the language with a conditional execution and

branching construct. A TEST contains an ordered sequence of CASE-es. The execution

semantics of the TEST is that each CASE within a TEST is executed in order, starting

from the first case in the sequence. COMPOUND UNIT is the base class of the two

compound objects in GReAT: (1) BLOCK and (2) FOR_BLOCK. These blocks are

useful for encapsulating complex rule sequences. The only difference between a BLOCK

and FOR_BLOCK is in their execution semantics. The compound expressions use a stack

machine semantics and thus have a ready UnitStack with push and pop operations.

The BLOCK is the simplest compound unit. It encapsulates a set of units along

with their sequencing. The execution of the block starts with the StartBlock function that

finds all the units that have a sequence from the input interface of the BLOCK. All these

units are added to the readyUnitStack along with a copy of the input packets set of the

BLOCK.

178

The execution is then defined to pop the top of the stack, execute the unit with the

input packets, use the sequence from the current rule to get the new ready-to-fire units,

179

and add these to the stack. This process is repeated until the readyUnitStack is empty.

Whenever a unit that has executed is connected to the output interface of the BLOCK, the

outputs are copied to the output of the BLOCK. The FOR BLOCK is similar to the

BLOCK with a subtle difference. The execution of the FOR BLOCK starts the unit

execution stack with only the first input packet. When the stack is empty the process is

repeated with the next packet until all packets are exhausted. The FOR BLOCK provides

a depth first execution of all the contained units while the BLOCK provides a breadth

first execution.

180

APPENDIX E.

CONFIGURATION ASPECT OF UMT

Information that is required to run the transformations such as the starting rule of

the transformation, inputs to and outputs from the transformation, the files involved etc.

are captured by the configuration aspect of the UML Model Transformer (UMT)

paradigm.

In
<<AtomProxy>>

Expression
<<ModelProxy>>

TransformationInput
<<Connection>>

FileObject
<<Atom>>

ObjectPath : field

FileType
<<Model>>

DtdFilePath : field
MetaName : field
Mode : enum
RootClassName : field
RunInMemory : bool

StartRule
<<Reference>>

Configuration
<<Model>>

CodeGenFileName : field
ConfigFile : field

Configurations
<<Folder>>

FileBind
<<Connection>>

File
<<Atom>>

CopyPathName : field
FilePathName : field

dst
0..*

0..*

0..*

0..*

src 0..*0..*

0..*

0..*

src
0..*

dst
0..*

Figure 64 Metamodel of the configuration aspect of UMT

Figure 64 shows the metamodel of the configuration aspect. A configuration

contains a StartRule that can refer to any Expression. The configuration also contains

FileType objects that define the type of the file the particular input will belong to.

FileType instances will contain the paradigm, root object name, the dtd/xsd path, the file

opertation mode and other information that deals with the file handling. FileTypes

181

contain FileObjects which are place holders defining the particular object in the file that

will be provided as input to the start rule. TransformationInput is an association that

associates the FileObjects with the input ports of the StartRule. Entities called File

provide the names of the default files to be used to run the transformations and are

associated with their FileTypes using the FileBind association.

182

APPENDIX F.

THE SIMULINK/STATEFLOW TO HSIF TRANSLATION ALGORITHM

This algorithm was developed by Dr. Gyula Simon.

Definition 1 The flat Stateflow state machine contains the set of state ,

being the initial state. The set of transitions is

},...,,{ 21 NsssS =

1s SST ×⊆ where is a transition

from to . The corresponding transition condition is denoted by .

Tt ji ∈,

is js jiw ,

Definition 2 An output variable in the Stateflow diagram is called a switching signal if it

is connected to a Control Input of a Switch block in the Simulink diagram. The set of

switching signals in the state machine is }, ...q, q, q {qQ M321= . The value of the

switching signal in state is . q s)value(q, s

Definition 3 The switch value of a switching signal q in state s is the following:

⎩
⎨
⎧ ≥

=
otherwise0

 if1

b)threshold(value(q,s)
e(q, s)switchvalu

where b is the unique Switch block connected to q.

Definition 4 For a switching signal q and state , if either of the

following conditions hold:

is true) sdefined(q, i =

• q is explicitly set in , or is

183

• there exist a switch value u, such that for all j for which it is true that

and

 T t j,i ∈

) sdefined(q, j u)s (q, j =eswitchvalu .

Definition 5 The rank of state s is the number of switching signals that are defined in s.

The defect of s is defined as s) M - rank(defect(s) = .

Definition 6 The sequence of undefined switching signals in is defined as is

)idefect(skkkki , ..., q , q , qq U
321

= , where for all

, and

 false) , sdefined(q ikl
=

)t(s, ...defec, l i21=)defect(si
 k ... k k <<< 21 .

The algorithm consists of the following steps.

Step 1. Each state is split into is)defect(SiD 2= locations. The set of locations generated

from is . is { }∑ = Diiii ,2,1, ,...,, σσσ

Definition 7 The switch code of location ji,σ is a binary sequence of length M, denoted

by i,j,M i,j,i,j,i,j , ..., b, bb C 21= . The binary values are defined as follows:

⎪⎩

⎪
⎨
⎧

==

∈
=

defect(si)kkikk

ik

i,j,k , ..., qq U, q q, n)bit(j -

 U qe(qk, si)switchvalu
 b

n 1
where if1

 if

The function bit(x, y) defines the yth bit of the binary representation of x, the 1st

bit being the least significant bit.

184

Definition 8 The coloring is defined on the elements of the switch code. The binary

values of the code are either black or red, as follows:

⎩
⎨
⎧

∉
∈

=
ik

ik
i,j,k U qblack

 U qred
) color(b

 if
 if

Step 2. The locations are coded and colored according to Definition 7 and Definition 8.

Step 3. Create a transition i,j,n,mτ between ni,σ and mj ,σ if T ti,j ∈ , and there is no k

such that and j,m,ki,n,k b b ≠ red) color(b j,m,k = . The transition guard for this transition is

the predicate . i,jw

Definition 9 The set of all transitions in the HSIF description is denoted by Φ .

Definition 10 The Simulink diagram containing M Switch blocks describes the

reconfigurable dynamic system χ . The dynamic system with a particular setting of the

switches with switch values is denoted by M, ..., x, xx 21 ()M, ..., x, xx 21χ .

Step 4. For each state copy the algebraic equations defined in the state to locations is

ji,σ , for all . For each location defect(si), ..., , , j 2321= ji,σ generate the additional

algebraic and differential equations of the system ()ji,Cχ .

Step 5. Choose 1,1σ to be the initial location.

185

Step 6. Add the following invariants to location ji,σ :

• switching signal values from the entry action of , and is

• ()mi,Wm∨¬ for all indices m for which there exist n such that . The

operations ¬ and ∨ are the logical not and or operations, respectively.

Φτ i,m,j,n ∈

Definition 11 The location dependency graph is a directed graph on the set

∑∑∑ N
UUU

21
with edges Φ . A location σ is unreachable if there is no directed

path in the location dependency graph from 1,1σ to σ .

Step 7. Prune all unreachable locations from the HSIF description. Also delete the

transitions connected to unreachable locations.

186

REFERENCES

[1] J. Sztipanovits, and G. Karsai, “Model-Integrated Computing”, Computer, Apr.
1997, pp. 110-112

[2] “The Model Driven Architecture”, OMG, Needham, MA, 2002, URL =
http://www.omg.org/mda/.

[3] J. Rumbaugh, I. Jacobson, and G. Booch, “The Unified Modeling Language
Reference Manual”, Addison-Wesley, 1998.

[4] “Request For Proposal: MOF 2.0 Query/Views/Transformations”, OMG Document:
ad/2002-04-10, 2002, OMG, Needham, MA.

[5] Levine, J., T. Mason and D. Brown, "lex & yacc", O'Reilly, 1992, 2nd edition.

[6] Agrawal A., Karsai G., Ledeczi A., “An End-to-End Domain-Driven Development
Framework”, Domain-driven development track, 18th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, Anaheim, California, October 26, 2003.

[7] Bruno G., “Model Based Software Engineering”, Chapman & Hall, 1995.

[8] “Model of Computation”, Dictionary of Algorithms and Data Structure, National
Institute of Standards and Technology, URL =
http://www.nist.gov/dads/HTML/modelofcompu.html.

[9] “Finite State Machine”, Dictionary of Algorithms and Data Structure, National
Institute of Standards and Technology, URL =
http://www.nist.gov/dads/HTML/finiteStateMachine.html.

[10] K. L. McMillan, “Symbolic Model Checking: an approach to the state explosion
problem”, CMU Tech Rpt. CMU-CS-92-131.

[11] "Turing Machine", The Stanford Encyclopedia of Philosophy (Summer 2003
Edition), (ed.), URL = http://plato.stanford.edu/archives/sum2003/entries/turing-
machine/.

[12] “The Church-Turing Thesis”, The Stanford Encyclopedia of Philosophy (E. Zalta,
Edition), (ed), URL = http://plato.stanford.edu/entries/church-turing/.

[13] E. A. Lee, http://ptolemy.eecs.berkeley.edu/~eal/ee290n/glossary.html, EE290N:
Advanced Topics in System Theory, Fall, 1996.

[14] A. Ledeczi, et al., “Composing Domain-Specific Design Environments”, Computer,
Nov. 2001, pp. 44-51.

187

http://www.omg.org/mda/
http://www.nist.gov/dads/HTML/modelofcompu.html
http://www.nist.gov/dads/HTML/finiteStateMachine.html
http://plato.stanford.edu/archives/sum2003/entries/turing-machine/
http://plato.stanford.edu/archives/sum2003/entries/turing-machine/
http://plato.stanford.edu/entries/church-turing/

[15] J. D. Lara , H. Vangheluwe, “Using AToM3 as a Meta-CASE Tool”, Proceedings of
the 4th International Conference on Enterprise Information Systems ICEIS'2002 ,
642-649, Ciudad Real, Spain, April 2002.

[16] “Dome Guide”, Honeywell, Inc. Morris Township, N.J, 1999.

[17] Kim Mason, “Moses Formalism Creation – Tutorial”, Computer Engineering and
Networks Laboratory (TIK), Swiss Federal Institute of Technology Zurich, CH-
8092, Switzerland, February 9, 2000.

[18] L. A. Cortes, P. Eles, and Z. Peng, “A Survey on Hardware/Software Codesign
Representation Models”, SAVE Project Report, Dept. of Computer and Information
Science, Linköping University, Sweden, June 1999.

[19] A. Jerraya and K. O’Brien, “SOLAR: An Intermediate Format for System-Level
Modeling and Synthesis,”, Codesign: Computer-Aided Software/Hardware
Engineering, J. Rozenblit and K. Buchenrieder, Eds. Piscataway, NJ, IEEE Press,
1995, pp. 145-175.

[20] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-
Vicentelli, “A Formal Specification Model for Hardware/Software Codesign,”
Technical Report UCB/ERL M93/48, Dept. EECS, University of California,
Berkeley, June 1993.

[21] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,” Science of
Computer Programming, vol. 8, pp. 231-274, June 1987.

[22] C. G. Cassandras, “Discrete Event Systems: Modeling and Performance Analysis”,
Irwin Publications, Boston, MA, 1993.

[23] E. A. Lee, “Modeling Concurrent Real-Time Processes using Discrete Events,”
Technical Report UCB/ERL M98/7, Dept. EECS, University of California, Berkeley,
March 1998.

[24] J. Peterson, “Petri Net Theory and the Modeling of Systems”, Prentice-Hall,
Englewood Cliffs, NJ, 1981.

[25] G. Dittrich, “Modeling of Complex Systems Using Hierarchical Petri Nets,”
Codesign: Computer-Aided Software/Hardware Engineering, J. Rozenblit and K.
Buchenrieder, Eds. Piscataway, NJ: IEEE Press, 1995, pp. 128-144.

[26] T. De Marco, “Structured Analysis and System Specification”, Prentice-Hall,
Englewood Cliffs, NJ, 1978.

[27] C. P. Gane and T. Sarson, “Structured System Analysis: Tools and Techniques”,
Prentice-Hall International, Englewood Cliffs, NJ, 1979.

188

[28] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Data Flow
Programs for Digital Signal Processing”, Transactions on Computers, C36 (1): 24-
35, January 1987.

[29] Katsuhiko Ogata, “Modern Control Engineering”, 4th edition. Prentice Hall, 2001.

[30] R. J. Mayers, et all, “Information Integration For Concurrent Engineering (Iice) Idef3
Process Description Capture Method Report”, Human Resources Directorate
Logistics Research Division, Knowledge Based Systems, Incorporated, Texas
77840-2335, September 1995.

[31] A. Kalavade, Edward A. Lee, “Design Methodology Management For System-Level
Design”, Ptolemy Miniconference, March 10, 1995.

[32] A. Kalavade, E. A. Lee, “A Global Criticality/Local Phase driven Algorithm for the
Constrained Hardware/Software Partitioning Problem”, Proc. of Codes/CASHE’94,
Third Intl. Workshop on Hardware/Software Codesign, pp. 42-48, Sept. 22-24, 1994.

[33] Edward A. Lee, “Overview of the Ptolemy Project”, Technical Memorandum
UCB/ERL M01/11 March 6, 2001.

[34] P. P. Chen. "The Entity-Relationship Model". ACM Trans. on Database Systems
(TODS), 1:9-36, 1976.

[35] J. Rumbaugh, I. Jacobson, and G. Booch, “The Unified Modeling Language
Reference Manual”, Addison-Wesley, 1998.

[36] M. Fowler, “UML Distilled Second Edition”, Addison Wesley Longman, Inc., 200.

[37] J. Gray, G. Karsai, “An Examination of DSLs for Concisely Representing Model
Traversals and Transformations”, 36th Annual Hawaii International Conference on
System Sciences (HICSS'03) - Track 9, p. 325a, January 06 - 09, 2003.

[38] “Simulink Reference”, The Mathworks, Inc., July 2002.

[39] ActiveHDL, http://www.aldec.com/ActiveHDL/, Aldec Inc., Henderson, NV 89074.

[40] M. E. Lesk, “LEX---a lexical analyzer generator”, CSTR 39, Bell Laboratories,
Murray Hill, NJ, 1975.

[41] Johnson S.C., “Yacc: Yet Another Compiler-Compiler”, Bell Laboratories, Murray
Hill, NJ, 1978.

[42] K. Czarnecki, U. Eisenecker, “Generative Programming: Methods, Techniques, and
Applications”, Addison-Wesley, 1999.

[43] J. Neighbors, “Software Construction Using Components”, Ph.D. Thesis, ICS-TR-
160, University of California at Irvine, 1980.

189

[44] J. Neighbors, “Draco 1.2 Users Manual”, University of California at Irvine, 1983.

[45] Don S. Batory, Jacob Neal Sarvela, Axel Rauschmayer, “Scaling Step-Wise
Refinement”, International Conference on Software Engineering, pp 187-197, 2003.

[46] The Moses Project, Computer Engineering and Communications Laboratory, ETH
Zurich URL = http://www.tik.ee.ethz.ch/~moses/

[47] R. Essar, J. Janneck and M. Naedele, “The Moses Tool Suite - A Tutorial”, Version
1.2, Computer, Engineering and Networks Laboratory, ETH Zurich, 2001.

[48] J. Janneck, “Graph-type definition language (GTDL)—specification”, Technical
report, Computer, Engineering and Networks Laboratory, ETH Zurich, 2000.

[49] J. Lara , H. Vangheluwe, “Using AToM as a Meta CASE Tool”, 4th International
Conference on Enterprise Information Systems, Universidad de Castilla-La Mancha,
Ciudad Real (Spain), 3-6, April 2002.

[50] J. Lara, H. Vangheluwe, “Computer Aided Multi-Paradigm Modeling to Process
Petri-Nets and Statecharts”, 1st International Conference on Graph Transformation,
Barcelona (Spain), 7-12, October 2002.

[51] S. Kent, O. Patrascoiu, “Kent Modelling Framework Version – Tutorial”, Computing
Laboratory, University of Kent, Canterbury, UK, Draft, December 2002.

[52] “ABC To Metacase Technology”, White Paper, MetaCase Consulting, Finland,
August, 2000.

[53] “Domain-Specific Modelling: 10 Times Faster Than UML”, White Paper, MetaCase
Consulting, Finland, January, 2001.

[54] Grzegorz Rozenberg, “Handbook of Graph Grammars and Computing by Graph
Transformation”, World Scientific Publishing Co. Pte. Ltd., 1997.

[55] M. Nagl, “Formal Languages of Labeled Graphs”, Computing 16 (1976), 113-137.

[56] M. Kaul, “Practical applications of precedence graph grammars”, Graph Grammars
and their application to Computer Science, Lecture Notes in Computer Science 291,
Springer-Verlag, Berlin, 1987.

[57] G. Rozenberg, E. Welzl, “Graph Theoretic closure properties of the family of
boundry NLC graph languages”, Acta Informatica 23, 289-309, 1986.

[58] R. Schuster, “Graphgrammatiken und Grapheinbettungen”, Algorithmen und
Komplexitat, Technical Report MIP-8711, Universitat Passau, 1987.

[59] Annegret Habel, “Hyperedge Replacement: Grammars and Languages”, volume 643
of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1992.

190

http://www.tik.ee.ethz.ch/~moses/

[60] Annegret Habel, “Hypergraph Grammars: Transformational and algorithmic
aspects”, Journal of Information Processing and Cybernitics EIK, 28:241-277, 1992.

[61] Michel Bauderon and Bruno Courcelle, “Graph expressions and graph rewriting”,
Mathematical Systems Theory, 20:83-127, 1987.

[62] R. J. Parikh, “On context-free languages”, Journal of ACM, 13:570-581, 1966.

[63] H. Erig, M. Pfender, and H. J. Schneider, “Graph Grammars: an algebraic approach”,
In Proceegings IEEE Conf. on Automata and Switching Theory, pages 167-180,
1973.

[64] M. Lowe, “Algabraic approach to single-pushout graph transformation”, Theoritical
Computer Science, 109:181-224, 1993.

[65] Blostein D., Schürr A., ”Computing with Graphs and Graph Rewriting”, Technical
Report AIB 97-8, Fachgruppe Informatik, RWTH Aachen, Germany.

[66] E. W. Dijksrta, “Guarded Commands, Nondeterminacy and Formal Derivation of
Programs”, Communications of ACM, 18:453-457, 1975.

[67] G. Nelson, “A Generalization of Dijksrta’s Calculus”, ACM transactions on
Programming Languages and Systems, Vol. 11, No. 4, pp-517-561, 1989.

[68] A. Schürr, “PROGRES for Beginners”, Technical Report, Lehrstuhl für Informatik
III, RWTH Aachen, Germany.

[69] H. Gottler, “Attributed graph grammars for graphics”, H. Ehrig, M. Nagl, and G.
Rosenberg, editors, Graph Grammars and their Application lo Computer Science,
LNCS 153, pages 130-142, Springer-Verlag, 1982.

[70] H. Göttler, "Diagram Editors = Graphs + Attributes + Graph Grammars,"
International Journal of Man-Machine Studies, Vol 37, No 4, Oct. 1992, pp. 481-
502.

[71] C. Ermel, T. Schultzke, “The AGG Environment: A Short Manual”, TU Berlin.

[72] J. Loyall and S. Kaplan, "Visual Concurrent Programming with Delta-Grammars,"
Journal of Visual Languages and Computing, Vol 3, 1992, pp. 107-133.

[73] D. Blostein, H. Fahmy, and A. Grbavec, “Practical Use of Graph Rewriting”, 5th
Workshop on Graph Grammars and Their Application To Computer Science,
Lecture Notes in Computer Science, Heidelberg, 1995.

[74] U. Assmann, “How to Uniformly specify Program Analysis and Transformation”,
Proceedings of the 6 International Conference on Compiler Construction (CC) '96,
LNCS 1060, Springer, 1996.

191

[75] A. Maggiolo-Schettini, A. Peron, “A Graph Rewriting Framework for Statecharts
Semantics”, Proc.\ 5th Int.\ Workshop on Graph Grammars and their Application to
Computer Science, 1996.

[76] A. Radermacher, “Support for Design Patterns through Graph Transformation
Tools'', Applications of Graph Transformation with Industrial Relevance, Monastery
Rolduc, Kerkrade, The Netherlands, Sep. 1999.

[77] A. Bredenfeld, R. Camposano, “Tool integration and construction using generated
graph-based design representations”, Proceedings of the 32nd ACM/IEEE
conference on Design automation conference, p.94-99, June 12-16, 1995, San
Francisco, CA.

[78] H. Fahmy, B. Blostein, “A Graph Grammar for Recognition of Music Notation”,
Machine Vision and Applications, Vol. 6, No. 2 (1993), 83-99.

[79] G. Engels, H. Ehrig, G. Rozenberg (eds.), “Special Issue on Graph Transformation
Systems”, Fundamenta Informaticae, Vol. 26, No. 3/4 (1996), No. 1/2, IOS Press
(1995).

[80] G.Schmidt, R. Berghammer (eds.), “Proc. Int. Workshop on Graph-Theoritic
Concepts in Computer Science”, (WG ’91), LNCS 570, Springer Verlag (1991).

[81] H.Ehrig, M. Pfender, H. J. Schneider, “Graph-grammars: an algebraic approach”,
Proceedings IEEE Conference on Automata and Switching Theory, pages 167-180
(1973).

[82] G. Viehstaedt, M. Minas, “Generating editors for direct manipulation of diagrams”,
5th International Conference on Human-Computer Interaction, Moscow, Russia,
pages 17-25. Springer-Verlag, July 1995.

[83] Bardohl,R., Ermel,C., and Weinhold,I., "GenGED - A visual definition tool for
visual modeling environments", Proc. Application of Graph Transformations with
Industrial Relevance (AGTIVE'03), pages 407-414, Sept./Oct., 2003, Charlottesville,
Virginia, USA.

[84] D. Varro, G. Varro and A. Pataricza, "Designing the Automatic Transformation of
Visual Languages", volume 44, Elsevier, pages 205–227, Science of Computer
Programming, 2002.

[85] Vizhanyo A., Agrawal A., Shi F., “Towards Generation of High-performance
Transformations”, Generative Programming and Component Engineering,
Vancouver, Canada, October 24, 2004.

[86] Agrawal A., Simon G., Karsai G., “Semantic Translation of Simulink/Stateflow
models to Hybrid Automata using Graph Transformations”, International Workshop
on Graph Transformation and Visual Modeling Techniques, Barcelona, Spain,

192

March 27, 2004, To be published in Electronic Notes in Theoretical Computer
Science.

[87] Object Management Group, Object Constraint Language Specification, OMG
Document formal/01-9-77. September 2001.

[88] A. Bakay, “The UDM Framework,” http://www.isis.vanderbilt.edu/Projects/mobies/.

[89] Magyari E., Bakay A., Lang A., Paka T., Vizhanyo A., Agrawal A., Karsai G.:
“UDM: An Infrastructure for Implementing Domain-Specific Modeling Languages”,
The 3rd OOPSLA Workshop on Domain-Specific Modeling, OOPSLA 2003,
Anahiem, California, October 26, 2003.

[90] J. McCarthy “Recursive functions of symbolic expressions and their computation by
machine – I”, Communications of the ACM, 3(1), 184-195, 1960.

[91] Uwe Assmann, “Aspect Weaving by Graph Rewriting”, Generative Component-
based Software Engineering (GCSE), p. 24-36, Oct 1999.

[92] G. Karsai, S. Padalkar, H. Franke, J. Sztipanovits, ”A Practical Method For Creating
Plant Diagnositics Applications”, Integrated Computer-Aided Engineering, 3, 4, pp.
291-304, 1996.

[93] E. Long, A. Misra, J. Sztipanovits, “Increasing Productivity at Saturn”, IEEE
Computer Magazine, August 1998.

[94] AGG, http://tfs.cs.tu-berlin.de/agg/.

[95] H. Kreowski, S. Kuske: “Graph Transformation Units and Modules,” in H. Ehrig, G.
Engels, H. Kreowski, G. Rozenberg, Handbook of Graph Grammars and Computing
by Graph Transformation, Vol. 2: Applications, Languages and Tools, pages 607-
638. World Scientific, Singapore, 1999.

[96] Karsai G., Agrawal A., Shi F., Sprinkle J., “On the Use of Graph Transformations
for the Formal Specification of Model Interpreters”, Journal of Universal Computer
Science, Special issue on Formal Specification of CBS, 2003.

[97] J. Gray, G. Karsai, “An Examination of DSLs for Concisely Representing Model
Traversals and Transformations”, 36th Annual Hawaii International Conference on
System Sciences (HICSS'03) - Track 9, p. 325a, January 06 - 09, 2003.

[98] The Hybrid System Interchange Format, for details see
http://www.isis.vanderbilt.edu/Projects/mobies/downloads.asp

[99] T. A. Heinzinger, “The Theory of Hybrid Automata”, In Proc. Of IEEE Symposium
on Logic in Computer Science, IEEE press, pp 278-292, 1996.

193

http://www.isis.vanderbilt.edu/Projects/mobies/
http://tfs.cs.tu-berlin.de/agg/
http://www.isis.vanderbilt.edu/Projects/mobies/downloads.asp

[100] Hylands, C., Lee, E., Liu, J., Liu, X., Neuendorffer, S., Zheng, H.,“HyVisual: A
Hybrid System Visual Modeler,” Technical Memorandum UCB/ERL
M03/1,University of California, Berkeley, CA 94720, January 28, 2003.

[101] Roger Duke, Gordon Rose and Graeme Smith, “Object-Z: a Specification
Language Advocated for the Description of Standards”; TR 94-95, December 1994,
Software Verification Research Centre, Department Of Computer Science, The
University Of Queensland, Queensland 4072, Australia.

[102] J. McCarthy, “Recursive functions of symbolic expressions and their computation
by machine – I”, Communications of the ACM, 3(1), 184-195, 1960.

194

