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1.  INTRODUCTION 

The evolution of programming languages shows a clear direction towards higher levels of 
abstraction. This evolution started from assembly languages, went on to procedural 
languages, then to object oriented languages and now the state of the art is component 
oriented languages and frameworks. In the same timeframe top down approaches classified 
as Model Based Software Engineering [6] attempted to bridge large semantic gaps between 
very-high-level semantic models and programming languages, and failed. This community 
found success in more rigorous domain-specific fields such as embedded systems where 
formal and graphical models were already in use. An example of such a success is Matlab’s 
Simulink/Stateflow [36] modeling language. With the advent of Unified Modeling Language 
(UML) and Model Driven Architecture (MDA) that advocate the use of models in software 
development, the communities were brought together and are producing promising results.  

For textual languages and compiler design there is a vast literature in textual grammars, 
parsers, parser generators and other formal methods to specify and implement textual 
languages and compilers. Theory and formal methods equivalent to that of textual grammars 
can be of tremendous help to the modeling community. Graph grammars and transformations 
have been studied for over the 30 years and have produced many theoretical results. 
However, these results haven’t been applied to the development of methodologies or tools 
that facilitate the development of modeling languages. 

The application of the theory of graph grammars towards the design of modeling languages 
seems to have much potential. This paper surveys both areas and explores potential topics for 
dissertation research.  

This paper is organized as follows: Chapter 2 reviews Model Based Software Engineering. A 
survey of various modeling approaches is presented along with a critique. Chapter 3 
investigates generative and model based solutions to solving software development problems 
in various domains. Generative methods such as Draco and GenVoca are surveyed. The 
chapter also looks at various meta configurable development tools used for the specification 
and implementation of domain specific modeling environments. A comparison of these tools 
is presented at the end of the chapter. Chapter 4 reviews the theoretical work on graph 
grammars and transformations and tries to see if it may be able to solve some problems 
identified in the meta-programmable tools. Chapter 5 contains a survey of some of the 
notable graph grammar and transformation based tools and evaluates the tools against a set of 
desired features. Finally in Chapter 6 the dissertation proposal is stated along with the goals, 
completion criteria and the current status of the research. 
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2.  MODEL BASED SOFTWARE ENGINEERING 

Software engineering is a discipline where a variety of challenges have to be met on a daily 
basis. These challenges are due to three causes: (1) System complexity: inherent complexity 
of the problem domain, logic and software development. (2) Implementation technology 
complexity and (3) Organization of the development process. A great deal of research effort 
has gone into each of the above mentioned areas and specifically in the area of System 
complexity. To mitigate system complexity there has been a continual quest to raise the level 
of abstraction used for the specification of such systems. This trend is apparent in 
programming languages that started from machine languages and have evolved to the state of 
the art in object oriented and component based languages. This quest has also given rise to 
various model based techniques that use abstractions of the problem domain to specify the 
solution [6]. 

Models are abstractions of the real world and are used to precisely and often formally 
describe and analyze the working of some relevant portions of the physical system. Some 
examples of models are: scaled models of buildings and model cars that function in the same 
manner as their real counter parts.  

The main benefits of models are that they help abstract away irrelevant details while 
highlighting the relevant. Mathematical models are often found in many disciplines such as 
control engineering where the functioning of a plant is described in terms of differential 
equations. These abstract and formal models are often used for analysis through simulation 
and formal verification. 

The software engineering discipline has only recently begun to adopt modeling. Modeling 
languages suitable to express various aspects of software have been introduced and are being 
used in the community. Some example languages are dataflow and its variants [25][26][27], 
state machine and state charts [17][18][19][20], entity-relationship diagrams [32] and more 
recently object oriented modeling languages such as UML [33]. Several tools have been 
implemented that allow graphical specification of the structure and behavior of software 
using one or many of the formalisms mentioned above. These tools try to automate the 
process of simulation, verification and synthesis of the end system. [6] 

In this chapter various modeling techniques are studied to find their merits and drawbacks. In 
order to study the advantages of modeling, modeling paradigms will be classified into 
different categories. The study may yield results that hold true for the entire classification of 
modeling language. 

2.1. MODEL CLASSIFICATION  
Models are an abstract representation of a system. They have various notations and are used 
for different purposes. Modeling languages can be classified based on various parameters. 
One such classification can be based on level of detail captured in the models and it can vary 
from very precise low-level modeling languages to abstract high level languages. Another 
classification can be based on the scope of the languages; it can vary from general purpose 
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languages to highly customized domain specific language. Modeling languages can also be 
classified based on their notation into visual, textual or both.  

The rest of this chapter will explore a few of these classifications and try to draw conclusions 
on the merits of the various classes of modeling languages. 

2.1.1. LOW-LEVEL AND HIGH-LEVEL MODELS 
One criterion for classification is the level of abstraction: the level of detail captured by the 
models. On one hand low-level models, called Models of Computation (MoC) precisely 
describe how computation is done. On the other hand high-level models are used to specify 
design and intention. The next sub section will describe a few low-level and high-level 
modeling languages and compare them. 

2.1.2. MODELS OF COMPUTATION 
“A formal, abstract definition of a computer. Using a model one can more 
easily analyze the intrinsic execution time or memory space of an algorithm 
while ignoring many implementation issues. There are many models of 
computation which differ in computing power (that is, some models can 
perform computations impossible for other models) and the cost of various 
operations.” 

[7] 

A Model Of Computation (MOC) is a platform independent abstraction of a computing 
device. MOCs have precise execution semantics and are not tied to an implementation. 
Generating an implementation from an MOC for a particular platform is usually a simple 
straightforward process. Examples of widely used MOCs are Finite State Machine (FSM), 
Turing Machine, Discrete-Event and Petri Nets. This section will review these MOCs.  

2.1.2.1. Finite State Machine (FSM) 
“A model of computation consisting of a set of states, a start state, an input 
alphabet, and a transition function that maps input symbols and current states 
to a next state. Computation begins in the start state with an input string. It 
changes to new states depending on the transition function. There are many 
variants, for instance, machines having actions (outputs) associated with 
transitions (Mealy machine) or states (Moore machine), multiple start states, 
transitions conditioned on no input symbol (a null) or more than one 
transition for a given symbol and state (nondeterministic finite state machine), 
one or more states designated as accepting states (recognizer), etc.” 

[8] 

The Finite State Machine (FSM) representation is useful in describing applications that are 
tightly coupled with their environment. It is also suited for control-dominated and reactive 
applications. However, concurrency is not easily captured and results in the exponential 
growth in the number of states with linear increase in degree of concurrency. This problem is 
known as the state space explosion problem. In order to overcome various weaknesses of the 
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classical FSM a number of extensions such as hierarchy and concurrency have been 
developed. A few such variants are discussed in brief [17].  

SOLAR [18], a design representation for high-level control flow dominated systems is an 
extension of the FSM representation. Concurrency is achieved by capturing parallel 
components of the system as separate FSMs that communicate with each. The 
communication between FSMs is either with the help of ports that are wired together or with 
the help of communication channels that implement a protocol. Each component can either 
be a FSM or be composed of smaller FSMs. Thus the model allows hierarchical 
decomposition of the system. 

Codesign Finite State Machine (CFSM) is another model based on the FSM. It is intended to 
describe embedded applications with low algorithmic complexity. Both hardware and 
software can be depicted using this model of computation. It can be used to partition and 
implement applications. The basic communication primitive is an event and the behavior of 
the system is defined as a sequence of events. The events are broadcast and have zero 
propagation time.  This model of computation is used as an intermediate representation that 
high-level languages can map to [17][19]. 

Statecharts by Harel [20] is another extension of FSMs that provides three major facilities, 
namely hierarchy, concurrency and communication. Statecharts are high-level Finite State 
Machines having AND and OR states. The AND states primarily achieve concurrency while 
the OR states are for representing hierarchy. Communication is based on events that are 
broadcasted instantaneously. This representation is well suited for large and complex reactive 
systems. 

Finite State Machines (FSMs) are a simple yet powerful and can be used to represent a wide 
range of systems from digital logic to communication protocols. FSMs have been widely 
studies and there are well established analysis methods and tools such as SMV [9]. On the 
other hand large problems with concurrency become very difficult to express due to the state 
space explosion. This prompted the introduction of a number of FSM variants that have 
introduced various abstractions to cover concurrency and hierarchy. SOLAR, CFSM or 
Statecharts can be considered as high-level modeling formalisms useful for the specification 
of large problems. Transformations can be written to map them to FSM which is a domain 
independent, platform independent MOC. By writing these transformations users not only 
benefit fro the use of high-level modeling languages but also from the verification 
capabilities of the low-level MOC. Furthermore, the abstract FSM representation can then be 
converted to a platform specific implementation suitable for a particular platform. This helps 
isolating the implementation from intention. 

2.1.2.2. Turing Machine 
“A model of computation consisting of a finite state machine controller, a 
read-write head, and an unbounded sequential tape. Depending on the current 
state and symbol read on the tape, the machine can change its state and move 
the head to the left or right. Unless otherwise specified, a Turing machine is 
deterministic.” 

[10] 
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A Turing machine consists of an infinite single dimensional tape, a read/write head and a 
finite state machine controlling the actions of the head. Each cell of the tape can contain a 
binary digit (0 or 1). Based on the current state and value at cell, an action performed. The 
action can write a new value at the current location and possibly move the head by one 
position in either left or right direction. It can also change the state of the machine by taking 
a transition to another state. 

This simple machine is a complete abstraction of a computing device. A Turing machine can 
solve any problem that can be expressed as a general recursive function [11] and Turing 
completeness is used as a measure of the expressiveness of programming languages. In 
practice Turing machines are not used as programming for such a device is quite 
cumbersome. Instead high-level Turing complete programming languages such as C, C++ are 
used for programming needs. 

2.1.2.3. Discrete-Event Systems 
“Discrete-Event System is a timed system where for each tuple s of signals 
that satisfies the system, there is an order-preserving bijection from (a) the 
integers (for a two-sided DE system) or (b) the natural numbers (for a one 
sided DE system) to T(s), where T(s) is the set of tags in s.” 

Edward. A. Lee [12] 

Systems having discrete states and driven by events over a period of time are referred to as 
Discrete-Event Systems [21]. These systems are asynchronous in nature and react to discrete 
events over time. An event is considered instantaneous, that is, the transition and action are 
performed in zero time. Discrete event systems are not restricted to finite number of states. 
The notion of event being tied to time is also a primary difference between FSMs and 
Discrete event systems.  

Signals form the primary method of communication between tasks. They consist of a set of 
events over time. The events are time stamped and are sorted and processed in chronological 
order. Discrete-Event Systems are backed with formal mathematical descriptions [22] that 
facilitate formal verification and the construction of deterministic systems. Though these 
systems are good for real time applications the primary disadvantage is the computational 
cost of sorting the events globally to maintain the chronology. 

2.1.2.4. Petri Nets 
Petri-Nets [23] is a graphical representation introduced by Carl Adam Petri. With 
mathematical formalisms and abstraction, Petri Net is a mathematical tool that can be used to 
represent diverse semantic domains ranging from data-dominated to control-dominated 
applications. Semantics can be added to the models according to the domain. Some example 
domains are communication protocols, distributed software, compilers and operating 
systems. A Petri-Net is described as a 5-tuple, PN={P, T, F, W, Mo} where: 

P = {p1, p2, p3, …. ,pm }   is a finite set of places 

T = {t1, t2, t3, …….,tm }   is a finite set of transitions  

8 



F is a subset of (P x T) U (T x P)  is a set of arcs giving flow relations 

W: F -> {1, 2, 3, … }   is the weight function  

Mo: P -> {0, 1, 2, ….}  is the initial marking  

Places hold tokens, and a transition occurs when the number of tokens required for the 
transition is present in the required places. A transition removes a specific number of tokens 
from its source and adds tokens to its destination. The number of tokens at each place in the 
Petri Net defines its state.  

   
(a)     (b)    (c) 

Figure 1. An Example Petri Net 

Figure 1 shows three stages of an Example Petri Net. Figure 1(a) shows a state where there 
are three people standing on a bus stop and the bus is arriving; Figure 1(b) shows the net after 
two transitions have taken place. The first transition causes one token to move from the ‘Bus 
arriving’ place to the ‘Bus waiting’ place, the second transition causes one token to move 
from ‘Person waiting’ to ‘Person on bus’ place. Finally Figure 1(c) shows the state of the net 
after the transition from ‘Bus waiting’ to ‘Bus leaving’. 

The primary feature of Petri Nets is its concurrent, asynchronous nature. There are a number 
of mathematical analyses that can be performed on Petri Nets.  

The lack of hierarchy makes Petri Nets difficult to be used for large systems. Hierarchical 
Petri Nets (HPNs) [24] have been developed to mitigate the complexity of a flat 
representation. HPNs are modeled using bipartite directed graphs with inscription on the 
nodes and edges. There are two types of nodes, transitional nodes that represent activity and 
places that represent data or the state of the system [7]. This approach extends the Petri Net 
semantics with hierarchy making it suitable for complex systems. 

2.1.2.5. Data Flow Graph 
The classical programming structure of computer-based systems is control based as described 
by the Von Neumann machine. An alternative approach is data-dominated where the control 
flow is determined by availability of data. These systems have nodes describing computation 
and edges between nodes denoting a data path. If a node has sufficient data available on its 
incoming edges then it is ready to fire and will use the input data to generate output data. 
Transfer of data between computational modules is typically done with the help of buffers. 
This allows the tasks to run independently.  
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Various flavors of data flow are seen in literature. The two popular and distinct ones are 
Synchronous Data Flow (SDF) and Asynchronous Data Flow (ADF). In SDF the number of 
token produced and consumed by each node is fixed and needs to be known at the system 
design stage. This requirement allows SDF to be statically scheduled [27]. A static schedule 
is one that can be computed offline, has a finite sequence of execution of the nodes and 
required bounded buffers where the maximum size of the buffers is known before hand. ADF 
is defined as a data flow graph with unbounded buffers where computations can produce and 
consume variable number of tokens. Since the consumption and production of tokens can 
change at runtime ADF cannot be scheduled statically and hence, it has a greater run-time 
cost. However, it can be used to represent a vast majority of systems and is more flexible 
than SDF.  

Furthermore, many extensions have also been proposed to augment the data flow 
representation with hierarchy, strong data typing of tokens and parameterized nodes. The 
primary features of data flow are its inherent parallelism and data-dominated semantics. 

2.1.3. HIGH-LEVEL MODELS 
High-level models capture systems at a higher level of abstraction. These models may be 
specified with few or no implementation details. A few examples are partial differential 
equations that specify the behavior of a controller, block diagrams that define the design of 
system artifacts and high-level state machines that convey the basic behavior of a system. 
System level modeling languages fall in this category.  

With recent advances in generation technologies there is a push towards making high-level 
languages such as UML become executable artifacts. An executable artifact is one where the 
models capture sufficient information to facilitate the synthesis of low-level details. This 
section will highlight UML as a widely used system-level modeling language.  

2.1.3.1. Unified Modeling Language (UML) 
Unified Modeling Language (UML) [33] is an Object Management Group (OMG) standard 
for diagrammatically representing object-oriented designs. UML consists of a number of 
diagrammatic representations and an UML class diagram is one of them. Class diagrams 
graphically represent classes along with their member variables and functions. Inheritance, 
aggregation and other associations are also graphically represented. These class diagrams are 
a standardized and clean way to represent the design of complex systems. The important 
aspects of the diagrammatic representation are discussed here to provide a quick overview.  

Figure 2 depicts the basic notations. A class is represented with the actual name of the class 
in place of the Class Name text. The name in angular braces depicts the stereotype of the 
class. A stereotype states that the class conforms to the strict rule defined by the stereotype. 
For example, in this paper the stereotype <<atom>> is used. The atom stereotype states that 
classes that confirm to the <<atom>> stereotype should not contain other classes. Attributes 
and operations are listed in separate containers within the class rectangle.  

Class specialization is depicted using a triangular connector called ‘discriminator’. The class 
connected to the top on the triangle is the supertype while the classes connected to the bottom 
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are subtypes. Associations between classes are depicted with a line between the classes. On 
the association line the roles the classes play and their cardinality can also be specified. An 
association class can be specified to characterize an association. Composition represents a 
special kind of association that implies a class is composed of instances of another class and 
the instances cannot exist outside the composed class. The composition is depicted with a 
line having a diamond towards the composed class. The role and cardinality of the 
composing class is also specified on the composition line. Cardinality specifies the allowable 
lower and upper limit in the number of objects that are part of the association. For example, a 
class A is composed of 2 instances of class B, then the cardinality of class B in this 
composition is said to be 2. Cardinality can be specified as a fixed number or a possible 
range of numbers. The different notations of cardinality are shown in Figure 2. 

 
 

Figure 2 Basic notations of UML class diagrams [34] 

2.1.4. LOW-LEVEL VS HIGH-LEVEL 
In the previous section we have reviewed a few representative low-level and high-level 
modeling formalisms. Low-level MOCs are useful for precise specification of computing 
systems and have direct mappings to a computing devise. For example, FSMs can be 
implemented using either digital logic or software. Algorithms for mapping a MOC to an 
implementation can be, and have been in many cases fully automated. Thus we can view the 
low-level MOCs as executable computing devices. However, we have seen that these low-
level MOCs are not an efficient method for the specification of large system and sometimes 
do not scale well in their representation. For example, FSMs cannot be used for the 
specification of large parallel systems because of the state space explosion problem. Thus 
other representations that help mitigate complexity such as State Chart and UML are used to 
describe large systems. 

There exists a gap between the MOCs like FSM and Turing machine, and high-level 
representations such as architecture level block diagrams, State Charts and UML. In some 
cases humans are required to comprehend the problem and its solution using high-level 
representations and then encode the solution using programming languages such as C++ or 
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Java. Some systems provided, automated or semi automated programs to convert the high-
level specification to the equivalent executable code. However, these translator programs are 
often difficult to develop and require a large amount of programming and time and effort. 

In many domains, such as business or scientific computing the high-level representations as 
well as the MOCs can be very specific. In such cases customized tool suites are required to 
leverage the benefits of the domain and to significantly increase productivity. 

This leads to another classification of modeling languages based on the scope. Models can be 
classified as either domain specific or domain independent. The definition of a domain makes 
a great difference in this classification. In this paper the universal set is considered as the 
computing domain of computer programs i.e. general recursive functions. In this context a 
domain-specific computing paradigm will be one that doesn’t span the entire computing 
space and/or one that makes a set of assumptions based on the domain. 

2.2. DOMAIN SPECIFIC MODELING 
Modeling formalisms discussed in the previous section were universal. They encompass 
large domains such software design or the domain of computability. Modeling formalisms 
that are tailored for a specific domain help users specify systems using domain concepts they 
are familiar with. Domain specific modeling also allows users to specify systems at a higher 
level of abstraction. In such restricted domains executable systems can still be synthesized 
from high-level abstractions as domain knowledge can be used to fill in implementation 
details. There are many successful domain specific languages available, for example Matlab 
Simulink/Stateflow, Ptolemy and IDEF3. This section describes a few of these domain 
specific modeling formalisms. 

2.2.1. IDEF3 - PROCESS FLOW AND OBJECT STATE DESCRIPTION CAPTURE 
METHOD 
The IDEF3 Process Description Capture Method provides a mechanism for collecting and 
documenting processes. IDEF3 captures precedence and causality relations between 
situations and events in a form natural to domain experts by providing a structured method 
for expressing knowledge about how a system, process, or organization works [28].  

IDEF3 captures the behavioral aspects of an existing or proposed system. Captured process 
knowledge is structured within the context of a scenario, making IDEF3 an intuitive 
knowledge acquisition device for describing a system. IDEF3 captures all temporal 
information, including precedence and causality relationships associated with enterprise 
processes. The resulting IDEF3 descriptions provide a structured knowledge base for 
constructing analytical and design models. Unlike simulation languages (e.g., SIMAN, 
SLAM, GPSS, and WITNESS) that build predictive mathematical models, IDEF3 builds 
structured descriptions. These descriptions capture information about what a system actually 
does or will do and also provide for the organization and expression of different user views 
of the system [28]. 

There are two IDEF3 description modes, process flow and object state transition network. A 
process flow description captures knowledge of "how things work" in an organization, e.g., 
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the description of what happens to a part as it flows through a sequence of manufacturing 
processes (see Figure 3). The object state transition network description summarizes the 
allowable transitions an object may undergo throughout a particular process. Both the 
Process Flow Description and Object State Transition Description contain units of 
information that make up the system description. These model entities, as they are called, 
form the basic units of an IDEF3 description. The resulting diagrams and text comprise what 
is termed a "description" as opposed to the focus of what is produced by the other IDEF 
methods whose product is a "model." [28] 

 
Figure 3 an Example IDEF3 Process Description Diagram [28] 

An IDEF3 Process Flow Description captures a description of a process and the network of 
relations that exists between processes within the context of the overall scenario in which 
they occur. The intent of this description is to show how things work in a particular 
organization when viewed as being part of a particular problem solving or recurring situation. 
The development of an IDEF3 Process Flow Description consists of expressing facts, 
collected from domain experts, in terms of five basic descriptive building blocks. [28] 

2.2.2. PTOLEMY II – A POLYMORPHIC DESIGN ENVIRONMENT 
Ptolemy is a project dedicated to the modeling, simulation and design of real-time, embedded 
applications started in 1990 at University Of California at Berkeley. The focus of Ptolemy is 
on component-based design. The philosophy of this project is centered on using different 
models of computation and developing an environment that allows the mixing of these 
models of computation to create a heterogeneous application [31].  

Ptolemy is a polymorphous modeling tool used for the simulation of embedded applications. 
Figure 4 shows the design management strategy proposed by the Ptolemy project. Design 
starts with application specification using different models of computation and constraints. 
Different tasks of the system are evaluated and estimates are drawn. These estimates decide 
the hardware and software partition of the application. This is followed by hardware and 
software synthesis and verification. The final stage is the integration and system wide 
simulation [29].  

13 



   
Figure 4 Design Methodology Management using Ptolemy [29] 

A Java-based framework called Ptolemy II has been developed that implements the project 
ideas. The framework has an environment for the simulation and prototyping of 
heterogeneous systems. It is an object-oriented system allowing interaction between diverse 
models of computation. The Ptolemy software is extensible and publicly available. It allows 
experimentation with various models of computation, heterogeneous designs and co-
simulation. The primary feature of Ptolemy is the facility to compose various models of 
computation. Some of the models of computation supported by Ptolemy are hierarchical 
finite state machine, data flow graphs, discrete-event and synchronous/reactive. After 
specifying the application using heterogeneous models, the next step is to partition the 
application. This is done using different partitioning algorithms like GCLP [30]. Ptolemy 
facilitates mixed mode system simulation and synthesis. Software synthesis is supported for 
various models of computation along with support for composing these models. Hardware 
portions of the application are synthesized to VHDL. A register transfer level simulator 
(THOR) has also been added for simulating hardware applications [31].  

Other key features of the project are the representation of modern theories in a block diagram 
specification, a modular approach, a mathematical framework for comparison of models of 
computations, and simulation and scheduling of complex heterogeneous systems [31]. 

2.2.3. DOMAIN SPECIFIC VS DOMAIN INDEPENDENT 
Domain Specific Languages (DSLs) can increase productivity by bringing power 
programming to domain users via familiar specialized notations and languages. It is well 
know that GPLs have been more prevalent and successful compared to DSLs, even though 
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claims about DSLs’ capabilities to increase productivity are widely accepted [35]. The 
primary reasons behind the limited success of DSLs have historically been the following:  

• DSLs are more expensive to create as the development cost and time is borne by a 
small user community 

• Since there is a small user base, tools and support for a DSL is not at par with GPLs 

• The wide user base and longer life of GPLs helps make the language implementations 
robust and reliable. 

Another view of languages characterizes them as textual and graphical. Graphical languages 
are usually impractical for general-purpose programming but can be useful in a limited 
context, in specific domains. One of the most successful recent example of a graphical 
domain-specific language is Matlab/Simulink [36] used for simulation and control 
engineering. We believe that a mixed textual and graphical notation can be helpful in limited 
domains. For example, in the software development domain, the UML [33] specification has 
both textual (Object Constraint Language) and graphical (Use-Case Diagram, Class Diagram, 
etc.) notations. In hardware development domain, tool vendors [37] are now providing a 
graphical notation for the structural description of hardware while the behavioral description 
is still textual.  

For DSLs to become more popular the three hurdles mentioned above must be addressed. A 
key limitation is the cost of development (in terms of time and effort). The next chapter is 
dedicated to various methods for automated generation of software. 
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3.  GENERATIVE AND MODEL BASED SOLUTIONS 

This chapter studies literature on various generative methods for software development as 
well as model based solutions. 

Compiler compilers such as LEX [38] and YACC [39] are representative of the first breed of 
programs that were used for the automated implementation of programming languages. Since 
then a lot of progress has been made in both automated generation tools and the languages 
they develop. A few notable generative fields are Generative Programming and Model 
Integrated Computing (MIC). 

3.1. GENERATIVE PROGRAMMING (GP) 
Generative Programming (GP) is a software engineering paradigm based on 
modeling software system families such that, given a particular requirements 
specification, a highly customized and optimized intermediate or end-product 
can be automatically manufactured on demand from elementary, reusable 
implementation components by means of configuration knowledge. 

[40] 

Generative programming focuses on the automation of assembly lines for software product 
families. They elevate the engineering discipline from development of single products to the 
development of product line for a family of products. The salient features of generative 
programming are (1) means to specify family members, (2) implementation components and 
(3) knowledge that maps the family member specification to the finished product [40]. 

The process starts with the analysis of a domain. Commonalities and variabilities within the 
domain are defined. Using the domain knowledge a common architecture of the domain is 
designed and a production plan is formulated. Finally the architecture, reusable components, 
domain-specific languages, generators and the production process is implemented [40].  

Generative programming can be implemented in various ways ranging from code level 
methods such as generic programming, meta programming and aspect-oriented programming 
to high-level methods such as domain-specific languages/generators and intentional 
programming.  

Generic programming is a term used when a program, module or component is built such that 
it is configurable. Configurability can come by means of parameters, programming using 
abstract types and algorithms written in a generic manner such that they can be reused. Meta 
programming can be viewed as a special case of generic programming where the programs 
are written with a lot of variability built in and the variability can be configured at various 
stages in the program lifecycle. Aspect-oriented programming is a method of abstracting out 
various aspects of a program. For example, the security issues of a program could be 
captured in a different aspect, making it easy to build systems with or without security.  

Domain specific languages are different than the code based approaches as they define a 
language based exclusively for the domain. The development of the infrastructure usually 
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required considerable effort. Intentional programming is a new style of programming where 
the program is captured a set of intentions where intentions are the building blocks of the 
language. Intentions are extensible and people are free to write their own intentions. 

Low-level methods can be used in the implementation of the platform and reusable 
components but the assembly and deployment of products still require high level methods. 

The remainder of this section will discuss generator technologies such as Draco and 
GenVoca.  

3.1.1. DRACO 
Draco is a methodology that encourages the development of domain specific languages and 
tools for creating software. It was developed by James Neighbors at University of California, 
Irvine in 1980 [41][42].  

In Draco the development cycle starts with a Domain Analyst, a person who has built many 
systems in a given domain. The Domain Analyst describes the variability of the domain by 
defining a Domain Language for expressing systems in the domain. The next step is to define 
a visualization technique to make the domain language readable to the user. This step is 
called Prettyprinter Generation. The next step is to specify optimizations in the form of 
Source-to-Source Transformations [41][42].  

After the domain language and the associated tools are developed the next phase in the 
development process for the Domain Designer is to use the language and tools to create 
components and build libraries of components. Components are described as a set of 
refinements. The System Analyst then uses the language and libraries and extends the 
libraries to describe the required system. After the system has been described, a System 
Specialist uses the transformations in an interactive manner to convert the specification into 
executable code [41][42]. 

3.1.2. GENVOCA 
GenVoca is a tool and methodology developed by Don Batory. The tool is based upon step-
wise refinement of the domain specific specification. The next generation of the tool suite 
called AHEAD (Algebraic Hierarchical Equations for Application Design) [43] has been 
recently released. 

The key theme is the composition of features to construct finished products. Features are the 
reusable building blocks of the product family.  

Various layers of abstraction of a product family are identified. A high-level layer then 
becomes a parameter of its lower-level layer. Then components are defined that form 
families of alternatives at each layer. Each product is a particular configuration within the 
family. The primary challenges are identifying the layers and implementing the various 
components. The layered approach helps build a progressive infrastructure from very generic 
configurable components to highly customized domain specific systems.  
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3.1.3. SUMMARY 
Generative programming techniques are relevant and useful for the automation of well 
defined and tightly integrated product families. If the product family’s specifications change 
drastically then a lot of rework is required. Furthermore support for design and analysis of 
new systems or families of systems is lacking.  

3.2. MODEL INTEGRATED COMPUTING (MIC) 
MIC is a software and system development approach that advocates the use of domain-
specific models to represent relevant aspects of a system. The models capture system design 
and are used to synthesize executable systems, perform analysis or “drive” simulations. The 
advantage of this methodology is that it expedites the design process, supports evolution, 
eases system maintenance and reduces costs [1].  

The MIC development cycle (see Figure 5) starts with the formal specification of a new 
application domain. The specification proceeds by identifying the domain concepts, together 
with their attributes and inter-relationships through a process called metamodeling [1]. 
Metamodeling is enacted through the creation of metamodels that define the abstract syntax, 
static semantics and visualization rules of the domain. The visualization rules determine how 
domain models are to be visualized and manipulated in a visual modeling environment. Once 
the domain has been defined, the specification; i.e. the metamodel of the domain is used to 
generate a Domain-Specific Design Environment (DSDE) through the step called “Meta-
Level Translation”. The DSDE can then be used to create domain-specific designs/models; 
for example, a particular state machine is a domain-specific design that conforms to the rules 
specified in the metamodel of the state machine domain. The next step is to do something 
useful with the models such as to synthesize executable code, perform analysis or drive 
simulators. This is achieved by converting the models into another format such as executable 
code, input language of analysis tools, or configuration files for simulators. This mapping of 
the models to another useful form is called model transformation and is performed by model 
transformers [1]. Model transformers (also called “model interpreters”) are programs that 
convert models in a given domain into models of another domain. For instance, a source 
model can be in the form of a synchronous dataflow network of signal processing operations, 
while the target model can be in the form of Petri-nets, suitable for predicting the 
performance of the network. Note that the result of the transformation can be considered as a 
model that conforms to a different metamodel: the metamodel of the target [1]. 
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Figure 5 The MIC Development Cycle [1] 

A Model Integrated Computing (MIC) implementation must have the following features. 

1. Meta framework tools that will be used to describe the syntax, semantics and 
visualization of DSLs.  The meta framework must provide support for the specification 
of a language defined by its abstract syntax, concrete syntax, static semantics, dynamic 
semantics, and visualization. The syntax of a programming language describes the 
structure of programs without consideration of their meaning. The abstract syntax of the 
language captures the abstract concepts used in the language and their relationships. 
Issues such as type-compatibility are captured in the static semantics of the language. 
Dynamic semantics are defined as the relation of the abstract syntax to a model of 
computation. In other words, it can be considered as a mapping from one language to 
another (provided the model of computation is captured in a linguistic framework). 

2. Language framework tools that will be used for the creation, visualization and 
verification of sentences in a domain-specific language. The language framework 
should allow the use of the language in an integrated development environment that 
includes editing and visualizing instances of the language. The framework needs to 
enforce the concrete syntax and static semantics of the language during instance 
creation to provide maximum productivity. The final requirement of the framework is 
to be able to use transformation tools that map sentences of the language into sentences 
of some model of computation [7]. Examples of such models of computation are stack 
machines, process networks, finite state machines, etc. Often, although not always, 
sentences expressed in the target model of computation are executable, hence they are 
called “executable models”. 

MIC promotes a metamodel-based approach to system construction, which has gained 
acceptance in recent years. The flagship research products following this approach are: GME 
[13], Atom3 [14], DOME [15], Moses [16]. Each implementation has a metamodeling layer 
that allows the specification of a domain-specific modeling languages and a modeling layer 
that allows the creation and modification of domain models. 
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3.2.1. THE DOMAIN MODELING ENVIRONMENT (DOME) 
The Domain Modeling Environment (DOME) is a research project at Honeywell Technology 
Center. DOME has a metamodeling language called “DOME Tool Specification”. This is a 
proprietary language similar to entity relationship diagrams. There are two main entities the 
user can specify, a node and a link. The node represents a labeled node in the target language 
while a link represents a labeled directed edge in the target language. Links can be associated 
with nodes representing a constraint restricting the edge to be incident upon a particular kind 
of node. The language has inheritance; nodes can inherit properties from other nodes. Link 
associations and compositions are all described as attributes of nodes or other entities and the 
visualization doesn’t show these associations. Nodes and links can have attributes called 
“Properties”, these properties can be typed.  

Visualization specification is based on a set of basic shapes provided by the environment. 
The set of basic shapes consists of geometric shapes like square, circle, rectangle and a few 
others. The color of node and link types cannot be preset or chosen at metamodeling time.  
 
There is no support for the specification of static semantics. Thus rules based on the value of 
attribute or based on particular pattern of objects cannot be specified in the metamodeling 
language. However, the user can write functions to implement such functionality and have 
then be triggered GUI on events.  
 
There is no support for the specification of dynamic semantics. Dynamic semantics is 
represented and implemented by means of code written in a programming language called 
Alter. 

3.2.2. MOSES 
Moses is a modeling, simulation, implementation and verification framework funded by 
Swiss Federal Commission for Technology and Innovation (KTI) and developed by the 
collaboration between Computer Engineering and Networks Lab, ETH Zurich, Switzerland 
and ESEC S.A., Cham, Switzerland [44]. 

Moses has a textual metamodeling language called Graph Type Definition Language 
(GTDL) [46]. The language is used to specify formalisms (modeling language). GTDL 
allows the specification of the abstract and concrete syntax of the formalism. Vertex and 
Edge types can be defined in the language. Attributes can be defined as a type, name pair. 
These attributes can then be associated with vertex and edge types. Composition is 
represented by the parent graph type containing an attribute that of the child type [46].  

Visualization information of the object is also declared, such as shape, border color, fill color 
and dimensions [45]. 

Moses support for static semantic constraints or the lack thereof is not clear from either the 
documentation or direct experimentation with the tool [45]. 
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Dynamic semantics are expressed in the form of Java code. They have a simulation platform 
called Hades that can be extended to support specialized computation for each modeling 
language [45].  

Moses supports animation of models by providing an extensible base animator class as part 
of the by the framework [45]. 

3.2.3. ATOM3 
Atom3 is a multi-paradigm modeling tool developed at Modeling, Simulation and Design Lab 
(MSDL) in the School of Computer Science of McGill University. As other MIC 
implementations it also supports metamodeling. 

The metamodeling language used by Atom3 is Entity Relationship (ER) diagrams. ER 
diagrams are used to specify the types of entities and their relations allowed in a particular 
modeling language. Typed attributes can be associated with each entity/relationship type. 
There is no direct support for composition or aggregation of entities or relations. The 
formalisms designed using this approach can be considered as flat representations [47][48].  

Static semantics can be specified in the form of either OCL expressions or Python scripts 
which are associated with entities or relations. The user can also specify constraints to be pre 
or post conditions of an editing event [47][48]. 

Dynamic semantics are represented using a graph grammar based transformation 
specification. The specification is converted to a python implementation [47][48].  

3.2.4. KENT MODELING FRAMEWORK 
The Kent Modeling Framework (KMF) is under development at the Computing Laboratory, 
University of Kent at Canterbury. KMF uses UML 1.3 and XMI 1.0 as the metamodeling 
language. UML class diagrams and constraints are fed to ToolGen that in turn creates a set of 
Java files to implement the editor for the desired modeling language. The generated Java file 
can then be compiled to generate a modeling language specific GUI. The lack of proper 
documentation hindered the successful generation of a modeling language [49].  

3.2.5. METAEDIT+ 
MetaEdit+ is a professional tool developed by MetaCase, Finland, that allows the 
specification and implementation of modeling languages. The metamodeling language is 
based on a set of dialog boxes that allow the user to specify domain objects and their 
relations. Properties can be associated with objects. Only flat modeling languages can be 
built using these tools and hierarchy is not supported [50][51]. 

For visualization MetaEdit+ has visualization editor that allows the user to draw the visual 
representation of the objects and to as specify the visualization of properties [50][51]. 

Apart from defining the types of objects allowed in the modeling language MetaEdit+ 
supports the definition and use of libraries of object types. These can then be used by the 
domain modeler to assemble a custom language [50][51]. 
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3.2.6. GENERIC MODELING ENVIRONMENT (GME) 
The Generic Modeling Environment (GME) is the main component of the latest generation 
of MIC technologies developed at the Institute for Software Integrated Systems (ISIS), 
Vanderbilt University. GME provides a framework for creating domain-specific modeling 
environments [1]. An important distinguishing property of the metamodeling environment of 
GME is that it is based on UML class diagrams [33] which is an industry standard. UML 
class diagrams are used to capture the syntax, semantics and visualization rules of the target 
domain. The meta-interpreter interprets the metamodels and generates a configuration file for 
GME. This configuration file acts as a meta-program for the (generic) GME editing engine, 
so that it makes GME behave like a specialized modeling environment supporting the target 
domain. Note that the core of GME is used both as the metamodeling environment and the 
target environment; the metamodeling language is just another domain-specific language that 
the common editing engine supports.  

GME has both a metamodeling environment and metamodel transformer that generates a new 
modeling environment from the metamodels. However, until recently there was a lack of 
generic tools to automatically generate domain-specific model transformers. Each model 
transformer was written by hand and was the most time consuming and error-prone phase of 
the MIC approach. There was a need to develop methods and tools to automate and thus 
speed up the process of creating model transformers. 

The MIC approach described above has gained significant attention recently with the advent 
of the Model Driven Architecture (MDA) by Object Management Group (OMG) [2]. MIC 
can be considered as a particular manifestation of MDA, which is tailored towards system 
construction via domain-specific modeling languages [5]. 

3.2.7. COMPARISON OF FEATURES 
Table 1: Comparison of Various MIC Tools 
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Most MIC implementations support the specification and implementation of syntax and 
visualization of domain-specific languages. However, support for static semantics and 
dynamic semantics is not adequate. Dynamic semantics are usually represented using a 
general purpose programming language. This makes the code complex and difficult to 
maintain. Atom3 is the only system that provides a graph grammar based transformation 
specification language. The language can be used for simple transformations but is not suited 
for complex transformations. 

3.3. SUMARY OF MODEL BASED SOLUTIONS 
This chapter reviewed various techniques and associated tools used in the automation of the 
development of a large number of software systems.  

Generative Programming (GP) consists of a variety of techniques used for the automated 
development of product families. GP techniques have the following features (1) Capturing 
the commonalities and the variabilities in the product families, (2) Development of a pool of 
components that can be reused within the family and possibly across families and (3) a 
method for the specification of the assembly. The largest effort in these techniques centers on 
the development of the reusable assets and is the most time consuming step. 

Model Integrated Computing (MIC) on the other hand has the philosophy of developing 
domain specific languages for each domain. Thus MIC tool suites comprise tools that 
facilitate the development of languages. This consists of developing the abstract syntax, 
concrete syntax, visualization, static semantics and dynamic semantics. The success of the 
MIC approach depends on the cost incurred in the development of a new language. Most 
implementations have good abstractions to capture the abstract syntax and concrete syntax of 
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the new language. However, static and dynamic semantics are usually captured as large and 
often complex model interpreters. This is the bottleneck of MIC and needs to be over come 
in order to have a greater impact on the software development community.  

To enhance the development of model transformers, we need a way to precisely specify the 
operation of those transformers on categories of models, and to then generate the model 
transformer code from the specification. However, this task is non-trivial as a model 
transformer can be required to work with two arbitrarily different domains and perform fairly 
complex computations. Hence, the specification language needs to be powerful enough to 
cover diverse needs and yet be simple and usable.  

From a mathematical viewpoint models in MIC are graphs, to be more precise: vertex and 
edge labeled multi-graphs, where the labels denote the corresponding entities (i.e. types) in 
the metamodel. It may be possible to use graph theoretic research and apply it to this 
problem.  
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4.  GRAPH GRAMMARS AND TRANSFORMATIONS 

Graph transformations and grammars have been a topic of research for well over 25 years. 
The research can be classified into two broad categories. The first category, graph grammars, 
is an extension of textual grammars and it gave rise to node replacement grammars [52][53] 
and hyperedge replacement grammars [57][58]. The second category, graph transformations, 
researches various mathematical fields such as category theory, set theory and algebra and 
extended it to graphs. The prominent works in this area are double pushout [60], single 
pushout [61] and programmed structure replacement systems [62]. The prominent graph 
transformation tools are AGG [66]and PROGRES [65]. 

This chapter is organized into sections where each section covers a particular class of graph 
grammars or transformation systems. Section 1 discusses node replacement grammars, 
followed by hyper-edge replacement grammars in Section 2. Section 3 deals with algebraic 
approaches while Section 4 discusses programmed graph replacement systems. 

4.1. NODE REPLACEMENT GRAPH GRAMMARS 
Node replacement grammars [52][53] are a class of graph grammars that are based primarily 
upon the replacement of nodes in a graph. The basic production of every node replacement 
grammar has an LHS subgraph (called mother graph) that produces an RHS subgraph (called 
daughter graph). Usually the LHS subgraph consists of only one node. The nodes that appear 
in the LHS of a production are similar to non-terminals in Chomsky’s Grammar. The 
production also has a gluing construct that defines how the daughter graph will glue to the 
rest of the graph. Edges in this grammar formalism are usually not considered to be first class 
objects, i.e. they are referred by means of the nodes to which they connect. The gluing 
constructs distinguish one node replacement grammar from another [52]. 

4.1.1. NODE LABEL CONTROLLED (NLC) 
NLC is one of the first node replacement grammars that appeared in literature. NLC 

is defined as 5-tuple [52]. 
),,,,( SCPG ∆Σ=  Where 

 
Σ - the entire alphabet set (all possible node labels) 
∆ - the alphabet set of terminals (node labels that do not appear on the LHS of any 

production) 
P  - the set of productions 
C - the connection relationships (the gluing conditions) 
S - the start graph 
 

Each production is defined as a non-terminal node producing a graph with terminals and non-
terminals along with a set of connection instructions. For example in Figure 6 we see a 
production with X in the LHS and a subgraph on the RHS along with a connection relation in 
the box. The semantics of the production is to first delete the LHS from the graph; in this 
case X is deleted form the graph. Next, the RHS graph is added. Then the connections 
between the input graph and the newly added daughter graph are established. A connection 
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relation is a pair of node labels of the form (l, m). If the LHS node was adjacent to a node 
labeled ‘l’ then all nodes in the RHS with label ‘m’ will be adjacent to the ‘l’ labeled node. 
For example, in Figure 6 the relation (c, a) implies that each ‘a’ labeled node in the RHS will 
be adjacent to any ‘c’ labeled neighbor of X [52].  

 

Figure 6 A NLC production 

To make the production more clear let us see an example. In Figure 7 we see that (a) is the 
starting graph. If we apply the production denoted in Figure 6, the first step is to remove the 
LHS of the production, in this case X, then add the daughter graph. The result is shown in 
(b). Next we add the edges between the daughter graph and rest of the graph according to the 
gluing condition to produce the final graph shown in (c) [52]. 

 
      (a)     (b)     (c)  

Figure 7 Application sequence of a production 

In NLC, connections are made between node labels. Sometimes it is desirable to refer to a 
particular node while specifying the gluing construct. This gives rise to a variation where the 
connection relationship is of the form (u, x), where u is a node label an x is a particular node 
in the daughter graph. This variation is called Neighborhood Controlled Embedding (NCE) 
and is studied in greater depth in the next section [52]. 
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4.1.2. NEIGHBORHOOD CONTROLLED EMBEDDING (NCE) 
The formal definition of NCE is as follows  

),,,( SPG ∆Σ=  

where  are as defined for NLC and P is defined as a production of the form  S,,∆Σ

P :- X  (D,C) where X  D is the production and C is the connection relationship of the 
form (u, x) where, u is a node label and x is a particular node the daughter graph. 

NCE can be extended with direction on the edges. This gives rise to dNCE. By adding labels 
to the edges and allowing the connection relationship to use edge labels makes the grammar 
eNCE. If both of the above mentioned extensions are added then we get edNCE which is the 
most popular node replacement grammar. The NCE production for the previous example is 
shown in Figure 8. The production states that X should be replaced by the daughter graph 
shown within the box. The connection relations state that every ‘c‘ adjacent to X in the 
mother graph will be adjacent to the node ‘a’ in the daughter and every ‘b’ adjacent to X in 
the mother graph will now be adjacent to both ‘b’ and ‘X’ in the daughter graph [52]. 

 
Figure 8 A NCE production 

In an edNCE system the order of application of the production rules is unspecified. Thus 
different application sequences may lead to different graphs [52].  

For this reason a property called confluence [54] is defined. A NCE grammar is said to be 
confluent if the output graph is the same irrespective of the sequence in which the 
productions are applied. Such grammars are called C-NCE. Confluence is a very interesting 
property as it guarantees the determinism of the productions. One possible way of achieving 
confluence is to have “Boundary” restriction: if all the productions in a NCE grammar do not 
have two non-terminals connected with an edge, and if this property is preserved in the initial 
graph then, the grammar is guaranteed to be confluent. Such grammars are called B-NLC. 
The boundary condition extends to edNCE grammar as well [52].   

 
The formal definition of edNCE is as follows: 
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In NCE an important concept is that of composition of embeddings. It is defined as follows: 
Let P1: X1  (H, CH) and P2: X2  (D, CD) be productions in a grammar where, 

)},,'/,(),,,/,(),,,/,(),,,'/','(),,,/,{( 21 outyainyYinyYinyoutyCD ααγβγβδγσδγσ=  
and )},,/,(),,,/,{( outuinuCH γβσγβσ= . If H and D are disjoint graphs and the 
substitution of v by (D, CD) in (H, CH) is denoted by (H, CH) [v/(D, CD)] embedding such that 
the embedding has the following property. 
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The embedding semantics is shown in Figure 9 where the node in question (X) is replaced by 

 

the entire graph (D, CD). Then all edges that X was associated to are substituted according to 
the edge substitution CD.  
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(a) (H, CH)    (b) (D, CD)   (c) (H, CH)[v/(D, CD)]  

Figure 9 Two graphs with embedding and the result of their substitution [52] 

The above definition of embedding has been proven to be associative in [55], thus 
. Another important property of composition of productions 

is confluence which was proved in [56]. 
]]/[/[]/][/[ DvHwKDvHwK =

4.2. HYPEREDGE REPLACEMENT GRAPH GRAMMARS 
Hyperedge replacement graph grammars [57][58] represents the next class of grammars that 
we study. The basic philosophy is to replace an edge/hyperedge with a subgraph. For 
example in Figure 10 the edge e is to be replaced by the graph on the RHS. 

 
Figure 10 Hyperedge production 

This production when applied to the graph in Figure 11(a) will remove the edge e from graph 
(a) and insert the graph from Figure 10 to produce the graph in Figure 11(b). 

 
       (a)          (b) 

Figure 11 An example to demonstrate the hyperedge production 

In general the edge to be replaced can be a hyperedge having more than two ends. Hyperedge 
replacement grammars have some interesting properties. The first is sequentialization and 
parallelization, which states that the productions can be either applied in a sequence or all at 
once. This property holds true because each production works on a different edge and thus 
there can be no interference between them. The next property is that of confluence and it 
states that the order of execution of the production doesn’t affect the result. Finally, 
associativity which states that if a production P1 is applied and then another production P2 is 
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applied to the result will yield the same result as the case where P2 is applied first and P1 is 
applied on the result. These properties are formally defined as follows: 

Sequentialization and Parallelization. Let H be a hypergraph with distinct  
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Confluence. Let H be a hypergraph with distinct  
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Associativity. Let H, H1, H2 be hypergraphs  
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Many properties have been proven about hyperedge replacement grammars. A list of the 
theorems is given below: 

1. Context-freeness lemma; it states that hyperedge replacement grammars are context 
free. 

2. Fixed-point theorem; it states that hyperedge replacement grammars are the least 
fixed points of their generating productions. 

3. Pumping lemma generalization; it states that each hyperedge replacement language 
can be decomposed into three hypergraphs FIRST, LINK and LAST such that all 
sentences of the language can be constructed by a suitable composition of FIRST, k 
samples of LINK and LAST for each natural number k [57]. 

4. Parikh’s theorem; the theorem is originally for context free languages and had been 
extended to hyperedge replacement grammars. It states that for all hyperedge 
replacement languages L and every Parikh mapping m, the set m(L) is semilinear 
[59]. 
 

There are other interesting results based upon the kind of string languages hyperedge 
replacement can generate and the kind of NP-complete graph languages generated from 
them. 

4.3. ALGEBRAIC APPROACH TO GRAPH TRANSFORMATION 
The next approach to graph grammars is the algebraic approach [60][61]. The idea was to 
generalize Chomsky grammars from strings to graphs. The main aim was to come up with a 
generalization of string concatenation to a gluing construction of graphs. The approach is 
algebraic because graphs are considered a special kind of algebra and the gluing is defined by 
algebraic constrictions called pushouts. The pushout approach has been taken from a more 
general field of category theory and has been applied to the more specific field of algebraic 
theory of graph grammars. There are two basic algebraic approaches, (a) Double PushOut 
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(DPO) [60] and (b) Single PushOut (SPO) [61] These approaches will be covered in their 
respective subsections.  

To define an algebraic approach to graph grammars first graphs have to be defined, then 
graph isomorphism and finally graph replacements. 

A graph is defined as two sorted algebras where the set of vertices V and the set of edges E 
are the carriers, and unary operations such as source s: E V and destination d: E V define 
a relation between vertices and edges. There are labeling functions lv: V LV and le: E LE, 
where LV and LE are the node and edge alphabet set. 

A production defines a partial correspondence between each element of its left and 
right hand side determining which nodes will be preserved, which deleted and which created 
new. The first step of applying a production is to match the LHS of the production in the host 
graph. A match m: L G is a graph homomorphism mapping nodes and edges of L to G, 
preserving the graph structure. Once a match is found for L in the LHR of a production, the 
next step is to remove from G all nodes and edges that have no correspondence in the RHS. 
Similarly those nodes and edges in R and not in L are added to G [52]. 

RLP →:

4.3.1. DOUBLE PUSHOUT (DPO) 
The basic approach in double pushout is: start with a subgraph to match in the input graph. 
Then an inverse gluing condition applied followed by a gluing. Put simply, two graphs are 
drawn. The production is represented as P  => L  K  R. After the subgraph L is matched 
in the host graph the first step is to remove parts of the matched graph that correspond to the 
elements in L and not in K. L is the inverse gluing condition and specifies what to delete 
from the graph. Next portions that are in R and not in K are added to the graph. This is the 
gluing condition. For example in Figure 12 we see that if we have a client (c) performing a 
job, it can stop the job, raise a request and then start performing the job again. In DPO we 
would say that when we find a client with a job, the production would first remove the job 
and then add a request and a job. 

 
Figure 12 DPO production  

In the algebraic approaches, concepts such as parallel application of productions have been 
defined. Parallelism in this approach can be defined in two ways: (1) based on the sequential 
processor model and is defined as a set of productions where the order of application doesn’t 
affect the result. (2) a truly parallel definition where the productions are applied in parallel 
using one processor per production. The first approach is called sequential independence 
while the second is explicit parallelism. Two productions are said to be sequentially 
independent if they are not causally dependent and two productions are parallel if they are 
mutually exclusive.  
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For explicit parallelism there is a need to define means that will facilitate the truly parallel 
application of the productions. Two approaches have been suggested. The first approach is 
called amalgamation, which specifies that if there are two productions P1 and P2 then the 
amalgamated production should be present such that the production P1 and P2 
can be applied in parallel and the amalgamated production P0 that represents the common 
parts of both the productions should be applied once. The control of application of 
productions has also been studied. Productions can be arranged into sequential and parallel 
flow.  

21 0 PP p⊕

There is another approach to parallelism in which the graph G is broken down into two parts 
and distributed to the different processors 21 0

GG G⊕ and then the common part G0 is used to 
put them together.  

4.3.2. SINGLE PUSHOUT (SPO) 
SPO specifies only one pushout that performs both the addition and deletion of nodes and 
edges. This causes ambiguity when two pattern nodes are mapped to the same node in the 
host graph and one pattern node is preserved in the pushout while the other isn’t. In SPO 
higher precedence is given to the deletion and thus in such cases the node will be deleted as 
shown in Figure 13. 

 
Figure 13 SPO production and example 

4.4. PROGRAMMED GRAPH REWRITING SYSTEMS 
The last section in this chapter is on programmed rewriting systems [62]. These represent the 
set of practical rewriting systems and have more working implementations than theorems. 
The pioneers in this field are the developers of PROgrammed GRaph REplacement System 
(PROGRES [65]).  

This section is broken down into three parts. The first part discusses graph replacement 
systems, the second deals with programmed graph replacement systems and how to apply 
control flow mechanisms to the graph replacement system. The third section discusses 
PROGRES’s approach to programmed graph rewriting. 
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4.4.1. LOGIC-BASED STRUCTURE REPLACEMENT SYSTEM 
This section [62] critiques graph replacement system and the points out their deficiencies. 
The problems with other graph replacement systems in practice are the following: 

1. A lack of static integrity constraints on graphs 
2. Specification of derived attributes and relations 
3. The implicit use of depth first search and backtracking. 

 
These lead to the development of PROGRES that addresses the problems states above. 

PROGRES uses structure replacement as its mathematical model to define graph 
replacements. Graphs are defined as structures with certain properties. In order to provide 
integrity constraints a signature is defined  

 
A signature is defined as a 5-tuple  
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In structure replacement systems, graph semantics have to be defined. Below is the 

definition of a class of graphs that show people, their income and relationship to other people  
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AF defines symbols for node labels, edge labels, attribute types, attribute values and 

evaluation functions. 
AP consists of four predicate symbols that define this structure to be a graph 

 Node(x,l): graph contains a node x with label l 
 Edge(x,e,y): graph contains edge, labeled ‘e’ that is incident on x and y 
 Attr(x,a,v): attribute a at node x has value v 
 Type(v,t): attribute v has type t 

V is a set of arbitrarily chosen constant names that are used to refer to single objects in the 
graph while W is a set of names used to refer to a set of objects matched in the graph. X is a 
set of names used for quantification purposes. 
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A structure is defined as a set of formulas. For example a structure of the person database can 
be 

F:={node(Adam, man), node(Eve, woman), node(Sally, woman),… , attr(Adam, income, 
5000), attr(Eve, income, 10000), …., edge(Adam, wife, Eve), edge(Eve, child, Sally), . } 

 
A schema defines all the possible structures that are legal. It is defined as a set of 
implications and equivalences. For example, 
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In simple words, a replacement production consists of a LHS subgraph, a RHS subgraph, a 
guard and attribute mapping constructs. The subgraphs have concepts such as negative edges, 
sets of nodes, optional nodes and edges.  

 
 

Figure 14 A production in the PROGRES system 

The example production in Figure 14 demonstrates most of the language features. The 
production specifies a pattern containing a man and woman vertex such that they are not 
brother/sister and are not married. The RHS of the production create an edge called wife 
from woman to man. In the production brother is a negative edges in the LHS. The children 
nodes are dashed which means they are optional and the matcher should match 0..* children 
for the given parent and thus showing the optional feature and the feature to match a set of 
nodes. The RHS of the rule specifies that a wife edge should be added and child edges should 
be added to the matched pattern. Apart from the LHS and RHS, there are constraints, which 
should evaluate to true for the rule fire. PROGRES also has a language to specify attribute 
mapping of the patterns.  

4.5. PROGRAMMED STRUCTURE REPLACEMENT SYSTEMS 
This section deals with the organization of the rules. In traditional graph grammars the 
execution semantics for rule execution is defined based on the availability of the LHS in the 
graph. Other approaches deal with issues such as production priority and regular expressions 
to specify rule fire sequences and control flow graphs. The author identified some desirable 
characteristics of the control flow. They are: 

1. Boolean nature: Application of a transformation should result in either success or 
failure. 

2. Atomic character: A sequence of replacement steps should modify the graph if and 
only if all of its intermediate steps succeed. 

3. Consistency preserving: The replacements have to preserve the consistency as 
specified by separately defined integrity constraints.  

4. Nondeterministic behavior: A single rule replaces any match of its LHS. 
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5. Recursive definition: Transformations should be allowed to call other transformations 
without restrictions. 
 

To fulfill these criteria PROGRES uses operators defined by Dijkstra in [63] and extended by 
Nelson in [64] to produce a formal language that can be verified using proofs. The constructs 
used are: 

 Skip – Always returns true and relates a given graph to itself. 
 Loop – will either loop forever or crash. 
 Def(a) – an action that succeeds if a returns true. 
 Undef(a) – an action that succeeds if a returns false. 
 (a ; b) – a sequential execution of a followed by b. 
 (a | b) – a nondeterministic choice between a and b. 
 (a & b) – returns the intersection of results of a and b. 

 

4.6. SUMARY OF GRAPH GRAMMARS AND TRANSFORMATIONS  
This chapter discussed the various graph grammars and transformations published in 
literature. These include node replacement grammars, hyperedge replacement grammars, 
algebraic approaches, and programmed graph replacement systems.  

Graph grammar techniques such as node replacement and hyperedge replacement grammars 
are direct extensions of textual grammars and are well suited for the specification and 
recognition of graphical languages. In textual languages, grammar is used primarily for 
parsing raw textual streams into tree data structures. Unlike textual languages, graphical 
languages are built with a database/data-structure backend and do not require a parsing 
phase. Grammars have the ‘execute when LHS sub graph found’ semantics: whenever a 
pattern is found in the host graph the particular rule in question will fire. This brings about 
two different issues. The first is that of confluence: the effect of the execution of the rules in 
different orders and the second is efficiency. Sub-graph isomorphism is an NP complete 
problem and thus the time complexity of the implementations is also a concern. 

Graph transformations take a different approach that that of grammars. Here the focus is on 
the transformation of a graph, including addition/deletion and modification of the graph. 
Algebraic approaches such as single and double pushout are transformation languages. They 
define transformations as algebraic constructs and take care of confluence by the use of 
sequencing of rules. However, the sequencing constructs are primitive and not adequate for 
specifying complex transformations. These transformation languages do not provide traversal 
strategies. The most mature of the transformation systems is the Programmed Structure 
Replacement System (PSRS) which use the structure replacement as the basis of the 
transformation. On top of the transformation there is a high level control flow language for 
the explicit sequencing of rules. PSRS also has a few drawbacks as a language for model-to-
model transformation. This language was developed to perform manipulations on databases 
and can only perform graph manipulations within the same domain. Manipulation of 
different graphs that conform to different type systems is not allowed.  

36 



5.  GRAPH TRANSFORMATION BASED TOOLS 

The theory described above has given rise to many tools. Prominent amongst these tools are 
PROGRES, AGG, DiaGen and GenGEd. Out of these tools PROGRESS and AGG support 
general purpose graph transformation languages while DiaGen and GenGEd are visual 
language environments. 

5.1. PROGRES 
Programmed Graph Replacement System (PROGRES) is a tool developed at Lehrstuhl für 
Informatik III, University of Technology Aachen (RWTH Aachen).  

PROGRES consist of an editor for the specification of the graph domain. The domain/type 
system is defined using a proprietary textual language called Schema. Schema has advanced 
type concepts such as inheritance, composition, implicit and explicit attributes [62][65]. 

Transformations are specified in Programmed Structure Replacement, a language with 
control flow semantics on top of the graph transformation. Graph transformations are 
specified using a graphical editor and can be embedded in the textual control flow of the 
transformation [62][65]. 

5.2. AGG 
The domain tools of AGG consist of a graphical editor for the specification of type graphs. 
Type graphs are the language used to specify the type system for the domain. Users can 
create node and edge types and specify the type requirement for the source and destination of 
the edges. The type system is simplistic and lacks concepts such as composition and 
inheritance. The type system doesn’t have support for semantic constraints, such as 
constraints that are based on attributes. Furthermore, a project can have only one type graph. 
Type checking based on the type system can be enabled and/or disabled very easily. There is 
limited support for the specification of the visualization features of vertices and edges 
[66][67][68]. 

The graph tools of AGG consist of a graphical editor for the specification of the graphs. 
Graphs can be created using types defined in the type graph. Alternately the user can disable 
the type graph and define node/edge types while creating the host graph [68]. 

The transformation tools include a visual transformation specification editor and a 
transformation engine that can perform the transformation. The transformation language used 
is single pushout. The visual editor allows the users to create and execute the rules. 
Alternatively a Java API is also provided that can be used to perform the transformation. A 
proprietary XML format called ggx is used to store graphs, transformation rules and the type 
graph [68]. 

5.3. COMPARISON OF FEATURES 
A set of requirements was created and it was used as the basis of comparison. The feature set 
chosen for the comparison is divided into three groups. (1) Domain Specification: A set of 

37 



features required to describe and enforce the graph domain. (2) Graph Specification: A set of 
features required to specify graphs in each tool and (3) Transformation Specification: A set 
of features required to specify and execute the transformations. 

Table 2: Comparison of Graph Transformation Tools  

  AGG PROGRES ATOM3 
Language Type graph Schema ER-diagrams 
Notation Graphical Textual Graphical 
Inheritance ----- Supported Not supported 
Attribute Types Supported Supported Supported 
Constraints Not Supported Not Supported Not supported 
Multiple domains Not Supported Not Supported Supported 
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Format Ggx format GRASS database  
Editing method Graphical Database manipulation Graphical 
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5.4. GRAPH TRANSFORMATIONS CRITIQUE  
Graph grammar techniques such as node replacement grammars, hyperedge replacement 
grammars, and algebraic approaches such as the ones used in AGG do not provide 
sufficiently rich mechanisms for controlling the application of transformation rules. 
PROGRES has a rich set of control mechanisms; however, they only perform 
transformations within the same domain. Domains specify the structural integrity constraints 
that the graphs must conform to. In PROGRES, these constraints are represented using 
schemas [65], while in AGG these are represented using type graphs [68].  

In MIC, the domain is represented by a metamodel, and the model transformations typically 
transform models/graphs that conform to one metamodel to models/graphs that conform to a 
completely different metamodel. For example, a model transformer may be required to 
convert models/graphs belonging to the “state machine” domain to models/graphs 
conforming to the “flow chart” domain. The graph transformation system must provide 
support for these transformations across heterogeneous domains. There is yet another 
problem: maintaining references between the different models/graphs. During the 
transformations it is usually required to link graph objects belonging to different domains.  

To illustrate the point let us consider a very simple transformation that needs to transform 
models conforming to one domain to another. For sake of simplicity let the source domain 
have one vertex type V1 and one edge type E1. Similarly, the target domain has one vertex 
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type V2 and one edge type E2. The transformation’s aim is to create a vertex in the target for 
each vertex in the source and an edge in the target corresponding to each edge in the source 
such that: 

2212,2211 11 VvVvEeEe ∋∃⇒∋∀∋∃⇒∋∀  

A simple algorithm could first create a target vertex for each source vertex and then create 
the edges. To create a target edge e2 that corresponds to the source edge e1 we need to find 
the vertices in the target that correspond to the source vertices e1 is incident upon. This 
information needs to be saved in the first phase of the transformation for use in the second 
phase, and can be considered as maintaining a reference between two graphs. There are other 
examples where the referencing is not that easy, for example, a transformation that 
determines the cross product of two sets of vertices to generate a new set of vertices. In this 
case each pair of source vertices should reference a single target vertex. A method is required 
to specify and use this information.  

The existing graph grammars and transformations are powerful mathematical concepts but 
not well suited for the specification and implementation of model transformers as described. 
Hence, a new approach that targets the specific needs of model-to-model transformation is 
required. 
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6.  PROPOSAL 

Model Integrated Computing (MIC) [1] advocates the use of domain specific concepts to 
represent system design. Domain specific models are then used to synthesize executable 
systems, perform analysis or drive simulations. Using domain concepts to represent system 
design helps increase productivity, makes systems easier to maintain and evolve and shortens 
the development cycle [1].  

To leverage the benefits of MIC in Model Driven Architecture (MDA), the MDA scope 
needs to be expanded to Domain Specific MDA (DSMDA) where the focus is on developing 
the MDA process for specific domains. A particular DSMDA will consist of a Domain 
Specific Modeling Environment that allows users to describe systems using domain concepts. 
This environment is then used to develop Domain Specific Platform Independent Models 
(DSPIMs). These models represent the behavior and structure of the system with no 
implementation details. Such models then need to be converted to a Domain Specific 
Platform Specific Models (DSPSM). DSPSM could either be based on the use of domain 
specific libraries and frameworks or not have any domain specific information. It is a term 
that covers all possible platform based models.  

Domain Specific MDA however, has its own problems such as high development cost, lack 
of standardization, and lack of vendor support [5]. These problems can be tackled by 
developing a framework to support the creation and use of Domain Specific Modeling 
Environments (DSME). The cost of the framework is distributed over all the projects built 
using it. Recurring needs can be factored out and implemented once in the framework. The 
framework can also help in the standardization of DSME specifications, thus providing a 
common vocabulary and standards based interfaces for vendors.  

There are a set of minimal requirements that such a framework must fulfill. In order to 
reduce the time required for the development of DSMEs the framework must provide tools to 
speedup each aspect of DSME creation. Section 3.2 lists a set of basic feature the framework 
should support.  

Tools such as GME [13], Atom3 [14], DOME [15] and Moses [16] already provide a major 
portion of the framework support. Among these tools GME supports the greatest number of 
features (see Table 1). Currently however, dynamic semantics are specified and implemented 
using code. DSME developers spend a significant amount of time and energy in writing code 
that implements the transformation from Domain Specific Platform Independent Model 
(DSPIM) to Domain Specific Platform Specific Model (DSPSM). 

For a framework to be successful it should significantly lower the time required to specify 
and implement DSMDAs. This includes the specification and implementation of the dynamic 
semantics. A high-level specification language it required for the specification of model 
transformers. An execution framework can then be used to execute such specifications. 
Currently the specification and implementation of the dynamic semantics of domain specific 
languages requires significant effort and it the bottleneck in the MIC process.  
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To speed up the development of DSMDAs a high-level language it required for the 
specification of model transformers. An execution framework can then be used to execute 
sentences of the language. Design of such a language is non-trivial as a model transformer 
can work with arbitrarily different domains and can perform fairly complex computations.  

Design of such a language is non-trivial as a model transformer should work with arbitrary 
domains and can perform fairly complex computations. The specification language needs to 
be powerful enough to cover diverse needs and yet be simple and usable.  

When observed from a mathematical viewpoint we see that models in MIC are graphs, to be 
more precise they are typed multi-graphs. Thus, the model transformation problem can be 
converted into a graph transformation problem. We can then use the mathematical concepts 
of graph transformations [52] to formally specify the intended behavior of a model 
interpreter.  

In Chapter 4. we saw that graph grammars and graph transformations have been recognized 
as a powerful technique for specifying complex transformations that can be used in various 
situations in a software development process [71][72][73][74]. Many tasks in software 
development can be formulated using this approach, including weaving of aspect-oriented 
programs [75] application of design patterns [73], and the transformation of platform-
independent models into platform specific models [5].  

These techniques have been developed mostly for the specification and recognition of graph 
languages, and performing transformations within the same “domain” (i.e. graph), while for 
model transformations the transformer should be able to work on two different kinds of 
graphs. Moreover, these transformation techniques use proprietary languages for the 
specification of the type systems and transformations. In summary, the following features are 
required in the transformation language: 

1. Transformations are often required to convert graphs belonging to one domain/type 
system into graphs that belong to another domain/type system. The language should 
provide the user with a way to specify the different graph domains being used.  

2. The transformation language should incorporate the graph domains in the transformation 
specification. It should use domain information to ensure type safety of graphs/models 
and guarantee that the transformation will preserve the syntactic correctness of the 
model/graphs. 

3. The transformation language should be powerful enough to specify any kind of mapping. 
It should also have simple constructs that are easy to use.  

4. There should be support for transformations that create independent models/graphs 
conforming to different domains. In the more general case there can be n input 
model/domain pairs and m output model/domain pairs.  

5. The language should have efficient implementations of its programming constructs. The 
generated implementation should be comparable to its equivalent hand written code. 
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6. All the previous points aim to increase productivity and achieve speed up in the time 
required for writing model interpreters. This is the primary goal and the most important 
aspect of this proposal. 

6.1. RESEARCH HYPOTHESIS 
“A Metamodel based transformation language using graph rewriting and transformations 
with support for multiple input and output graphs (corresponding to different domains) with 
an efficient implementation is suitable for the specification of model transformers. Such a 
language should help achieve a speed-up (the order of 2 to 10) in the time to develop model 
transformers and thus help develop a family of Domain Specific Model Driven Architecture 
tools.” 

6.2. RESEARCH METHODS 
A new language is required that leverages the benefits of graph grammars and 
transformations and also provides the required language constructs for the development of 
model transformers. language development is based on gathering requirements of model 
transformations and then researching how these needs can be fulfilled by simple and formal 
constructs. Requirements should be gathered by looking at various target applications and by 
creating a list of challenge problems. Two challenge problems have been chosen: 

1. Generate a non-hierarchical Finite State Machine (FSM) [8] from a Hierarchical 
Concurrent State Machine (HCSM) representation similar to Statecharts [20]. This 
problem introduces interesting challenges. To map concurrent state machines to a single 
machine there is a need for complex operations that include the Cartesian product of the 
parallel state space. Evaluation of this particular transformation requires a depth first 
bottom up approach and will test whether the system can allow different traversal 
schemes. 

2. Generate from a given Simulink/Stateflow model the equivalent Hybrid Automata [88]. 
This is another non-trivial example as the mapping is not a straightforward one-to-one 
mapping.  It is not even obvious if the problem can be solved in the most general case. 
The algorithm used to solve this problem converts a restricted Simulink-Stateflow model 
to its equivalent hybrid system. This algorithm has some interesting steps such as state 
splitting, reachability analysis and special graph walks that make it another interesting 
problem to try. 

The complexity of the example problems gives confidence that if solutions to these problems 
can be specified in the new language and efficient code can be generated from such a 
specification then the language will be expressive enough to be used to solve a large number 
of non-trivial real world problems.  

The next step is to develop language constructs that can solve these challenge problems. 
Development of language constructs includes its syntax, visualization, semantics and 
algorithms for its execution. These language constructs should then be evaluated on the basis 
of expressiveness, generality and efficiency. A few candidate constructs will then be 
implemented in the execution engine to further evaluate them. 
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A large part of this research effort will focus on the execution framework for the language. 
Initially a working, non-optimized framework will be used to test the language constructs. 
Such a framework should be easily modifiable to try out different constructs and algorithms. 
Such a framework can then be used to test algorithms that are needed for the execution of 
sentences of the language. 

6.3. COMPLETION CRITERIA 
The language developed should successfully solve the challenge problems described above. 
Success will be measured using three metrics.  

The first criterion is based on the expressiveness of the language. It should have all the 
language constructs required to specify the challenge problems and the implementation of the 
languages should be able to provide working solutions to them. This criterion is aimed to 
measure the ability of the language to express solutions to complex problems.  

The second is the time taken to solve the problem in the new language compared to the 
traditional approach (hand written code). This will give an idea of the speed up achieved in 
development time. Experiments to quantitatively validate such a claim are difficult and so a 
qualitative measure will be used based on the feedback of people using the tool. A rough 
comparison will be made based on the results of similar work using traditional approaches. 

The third metric is the speed of the generated model transformer compared to the hand-
written model transformer. The language along with the execution framework should allow 
users with little programming knowledge to specify model transformers, achieve a speed up 
(greater than 2) in the time to develop these transformers and should not degrade the 
performance of the transformers by more than a constant factor. 

6.4. PRELIMINARY WORK AND RESULTS 
At present I have developed a language that satisfies the requirements of mentioned in the 
research proposal. The GReAT language is Turing complete and has simple programming 
constructs. A formal specification of the GReAT semantics has been described using the Zed 
notation [87]. The execution engine GReAT E has also been developed and can execute the 
transformations expressed in GReAT. The language has been successfully used to implement 
the both the challenge problems. Table 1 shows a comparison of specification in GReAT vs. 
hand code. The primitive rules are rules that contain graph transformations while compound 
rules are higher-level control flow constructs. The compassion gives a rough idea of how the 
transformations relate to hand code. However, better experiments are required to provide 
concrete results. 

Table 3: Comparison of GReAT specification VS hand code 

GReAT Hand 
code Problems Primitive/ 

Compound Rules 
Time 
(man-hours) 

Est. 
LOC 

Mark and sweep algorithm on 
Finite State Machine (FSM) 7/2 ~2 ~100 
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Hierarchical Data Flow (HDF) to 
Flat Data Flow (FDF) 11/3 ~3 ~200 

Hierarchical Concurrent State 
Machine (HCSM) to Finite State 
Machine (FSM) 21/5 ~8 ~500 

Simulink Stateflow to C code 
70/50 ~25 ~2500 

Matlab Simulink/ Stateflow to 
Hybrid System  154/43 ~50 ~5000 

 

The execution engine needs to be efficient and some algorithms have been developed for 
pattern matching and efficient implementation of the language. 
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