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ABSTRACT 

This paper discusses a hierarchical online fault-adaptive 
control approach for Advanced Life Support (ALS) Sys-
tems. ALS systems contain a number of complex inter-
acting subsystems. To avoid complexity in the models 
and online analysis, diagnosis and fault-adaptive control 
is achieved by local units. To maintain overall perform-
ance, the problem of resource management for contend-
ing concurrent subsystems has to be addressed. We 
implement a control structure, where predefined set-
point specifications for system operation are used to de-
rive optimizing utility functions for the subsystem control-
lers. We apply this approach in situations where a fault 
occurs in a system, and once the fault is isolated and 
identified, the controllers use the updated system model 
to derive new set point specifications and utility functions 
for the faulty system. 

INTRODUCTION 

The support of human life in the hostile environment of 
space critically depends on a set of complex technical 
systems that contain or interact with biological and 
chemical processes. The NASA Advanced Life Support 
Systems (ALS) program, itself a component of the larger 
Advanced Human Support Technology (AHST) Pro-
gram, was created to explore new technologies required 
to support extended manned missions in space [1]. Po-
tential applications include a Lunar base, a manned mis-
sion to Mars, and the International Space Station (ISS). 
An ALS must exhibit a high level of autonomy, so as not 
to detract from the mission specific tasks of the crew. 
This requirement translates to a high level of availability 
of the individual components of the ALS. It also requires 
that the integrated system have the ability to adapt to 
changing mission objectives and crew configurations, 
mainly in response to unplanned events. 

Achieving good operational performance will depend 
critically on the ability to monitor the operation of the 
physical system, analyze its performance, and respond 
in a manner such that important functionalities are not 
lost or degraded. Process diagnosis refers to the capa-

bility to explain a deviation from nominal system behav-
ior. Diagnosis combines the fault detection, fault isola-
tion, and fault identification tasks [2]. These elements 
are a prerequisite to the ability to respond to any fault, 
especially if the goal is to continue operations in spite of 
the fault occurrence. Note that fault tolerance is not the 
desired objective in this case. Rather, the objective is to 
develop techniques so that the system can adapt to 
faults by reconfiguring itself and/or its controllers. Our 
goal is to develop autonomous systems, therefore, 
achieve this adaptivity by designing appropriate control 
schemes. 

The design of an ALS presents complex challenges, in-
cluding those related to control [3]. The system is made 
up of multiple loosely coupled subsystems, such as (i) a 
Water Recovery System (WRS), (ii) an Air Revitalization 
System (ARS), (iii) a Power generation system, (iv) a 
Thermal control system, (v) a Biomass production sys-
tem, (vi) a Food production subsystem, and (vii) a Solid 
waste collection and conditioning system. These subsys-
tems comprise a number of interacting control loops, 
such as the fluid flow loop, the energy management 
loop, the thermal control loop, the bio-regeneration and 
gas transfer loop, and the chemical production loop. 
These loops also cover multiple physical (energetic) 
domains and operating regimes, and operate at multiple 
time scales. An effective way to describe the behavior of 
the controlled physical subsystems is to model them as 
hybrid dynamical systems, which capture both the both 
continuous and discrete dynamics [4]. 

This paper discusses an online control approach for effi-
cient resource management in Advanced Life Support 
(ALS) Systems. The methodology developed targets a 
class of hybrid dynamic systems that have finite control 
sets. The underlying model, referred to as a switched 
hybrid system model, can describe the dynamics of a 
wide variety of practical real-life systems. General hybrid 
systems can be described by a transition structure on a 
state space, which is a cross product of two domains: (i) 
discrete-event and (ii) continuous-time dynamics. The 
interaction of discrete-event and time-based variables 
makes the behavior generation and analysis tasks quite 
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challenging and computationally complex. Considerable 
amount of research work has been dedicated recently to 
the study of hybrid systems dynamics [5, 6]. 

The complex nature of hybrid systems limits the applica-
bility of traditional optimal control techniques and super-
visory control techniques that can be applied directly to 
hybrid systems. Several promising approaches have 
been proposed in the literature to deal with the complex-
ity of hybrid systems. For example, abstraction tech-
niques have been developed to reduce the complexity of 
the hybrid models while preserving features of the origi-
nal model relevant to the analysis/control objectives 
(e.g., [7]). Supervisory control design with abstracted 
hybrid system models has been investigated in [8, 9]. 
Efficient control synthesis for reachability specifications 
through mode switching has been presented in [14]. 

Section 2 introduces the basic building blocks of our 
model-based FDI and fault-adaptive control schemes, 
and emphasizes the importance of component-based 
modeling and the link between fault isolation, identifica-
tion, and fault-adaptation. Section 3 presents the models 
of two coupled components of the Water Recovery sys-
tem (WRS) of the ALS that we have chosen as the test-
bed for our fault-adaptive control studies. Section 4 dis-
cusses our diagnosis scheme and the hierarchical deci-
sion-theoretic control scheme to achieve optimal per-
formance in the system given resource constraints and a 
set point trajectory that applies for nominal operation. 
Section 5 presents the results of the experiments we 
have conducted on the WRS, and section 6 presents the 
conclusions of this work. 

MODEL-BASED FAULT-ADAPTIVE CONTROL 

Our approach to fault-adaptive control, illustrated in Fig. 
1, is centered on model-based approaches for fault de-
tection, fault isolation and estimation, and hierarchical 
online supervisory control for hybrid systems. The plant 
is assumed to be a hybrid system [4, 5]. The heart of the 
Fault Adaptive Control Unit is the Hybrid Observer [11] 
that tracks the behavior of the plant under nominal con-
ditions. When the Fault Detector detects a discrepancy 
between the measured and the expected behavior, the 
diagnosis units are triggered. The Hybrid Diagnosis unit 
combines qualitative reasoning with quantitative pa-
rameter estimation. Qualitative diagnosis is based on 
dynamic plant models represented as Temporal Causal 
Graphs [12]. The set of candidates picked by the qualita-
tive diagnoser are passed to the Parameter Estimation 
Unit that reduces the candidate set to a single fault can-
didate by computing the degree of degradation, and re-
taining that candidate that has the least prediction error.  

The online hybrid control approach focuses on optimal 
resource management and robust fault-adaptive control 
using a decision-theoretic control scheme. The proposed 
approach is designed to ensure distribution of a finite 
amount of resources among contending subsystems of a 
larger system in a way that near optimal performance 
may be obtained over an extended period of time. In 

more detail, the control algorithm is designed to achieve 
a set of pre-specified performance requirements for the 
system over finite time intervals, while simultaneously 
optimizing a given utility/cost function for the composite 
system and maintaining overall system stability. To 
achieve fault adaptivity, the results of fault diagnosis are 
used to update the system model online so that the ob-
server may again track system behavior accurately un-
der faulty conditions. The online supervisory controller 
uses the updated system model to derive a new set of 
performance requirements. The decision-theoretic con-
trol schemes for the individual subsystems are then ap-
plied at runtime to optimize performance in the faulty 
system. 
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Figure 1: Fault-Adaptive Control Architecture 

MODELING THE WRS SYSTEM 

The ALS system is made up of multiple loosely-coupled 
subsystems [3], such as a Water Recovery System 
(WRS), an Air Revitalization System (ARS), a Biomass 
Production system, and a Power generation system. 
These subsystems comprise a number of interacting 
control loops, such as the fluid flow loop, the energy 
management loop, and the bio-regeneration and gas 
transfer loop. These loops also cover multiple physical 
domains, and operate at multiple time scales. An effec-
tive way to describe the behavior of the controlled sub-
systems is to model them as hybrid dynamic systems 
[4]. 

In this paper, we focus on the WRS, in particular on an 
experimental system that was developed and tested at 
the NASA Johnson Space Center (JSC) [13]. This sub-
system recycles urine and wastewater into potable wa-
ter. Critical requirements for such a system are that it 
consumes low power, minimize the use of consumable 
resources, and run in a fully autonomous mode for long 
periods of time. The WRS, as shown in Fig. 2, is com-
prised of a Biological Water Processor (BWP) to remove 
organic compounds including ammonia, a Reverse Os-
mosis (RO) System to remove particulate matter after 
the BWP, an Air Evaporation subsystem (AES) to purify 
the remaining concentrated brine that is purged from the 



RO system, and a post processing system (PPS) to re-
move the trace organic and trace inorganic compounds 
by ultra-violet treatment to bring the water to potable 
limits. The combination of the BWP and RO subsystems 
produce about 85% of the clean water. The remaining 
15% is produced by an evaporation and condensation 
process in the AES from the concentrated brine that is 
purged to it from the RO. In this work, we focus on con-
trollers for the RO and AES systems, and the interac-
tions between these systems to assure desired output 
given limited resources, which is primarily the energy 
available for subsystem operation. 

 

Figure 2: The Water Recovery System 

THE RO SUBSYSTEM - This subsystem, shown in Fig. 
3 is the linchpin subsystem in the WRS loop. It pulls wa-
ter from the GLS (gas liquid separator) of the BWP, and 
delivers purified water (permeate) to the PPS and con-
centrated brine to the AES. The RO removes inorganic 
compounds and particulate matter by pushing the input 
water at high speed through a cylindrical membrane that 
acts like a molecular sieve. The clean water permeate is 
passed on to the PPS, and the dirty water (brine) contin-
ues to circulate in the RO loop. 

 

Figure 3: RO system schematic 

The RO is designed to go through six modes. The pri-
mary mode draws water into a coiled section of pipe that 
acts like a reservoir, while processing permeate in the 
outer loop. When the brine concentration increases 
above a preset level, the system is switched to a secon-
dary mode, where the brine circulates faster in a smaller 
inner loop with the recirculation pump, therefore, it is 
pushed harder against the membrane. This keeps the 
clean water production at a reasonable rate, but the con-
centration of brine in the inner loop continues to in-
crease. At some point, the concentration of brine be-

comes high enough to reduce the output from the RO 
system significantly, so the brine is purged into the AES, 
a new batch of water is drawn in from the BWP, and the 
primary cycle starts again. Periodically, however, as par-
ticulate matter accumulates in the membrane, it needs to 
be cleaned by running the water backwards in the inner 
loop. This is known as the slough phase. The primary 
power consumers in the RO system are the two pumps, 
which circulate the water through the system. 

THE AES SUBSYSTEM - This subsystem contains a 
reservoir where the brine is collected. The brine is ab-
sorbed onto a wick and evaporated using hot air blown 
over the wick. The evaporated water is condensed by 
passing it through a heat exchanger, and collected in a 
tank before it is sent to the PPS system. The primary 
power consumers in this subsystem are the blower, 
which moves the air through the system, and the heating 
unit, which heats the air to facilitate evaporation of wa-
ter. 

 

Figure 4: AES schematic 

MODELING THE RO & AES SUBSYSTEMS – Building 
models at the right level of detail is a critical first step in 
the success of a model-based fault-adaptive control 
scheme. The choice of the model representation and the 
level of detail included in the model determine the set of 
faults that are linked to model parameters, and the set of 
inputs that can be controlled. In the bond-graph model-
ing paradigm [7] that we have adopted, faults in compo-
nents that are linked to parameters in the bond-graph 
model can be isolated, and the controlled inputs are rep-
resented as sources of flow and effort. 

Bond graphs (BG) define a domain-independent topo-
logical modeling language that captures energy-based 
interactions among the different physical processes that 
constitute a dynamic system [14]. The vertices in the 
graph are components or subsystems modeled as ge-
neric physical processes, such as capacities and inertias 
(energy storage processes), dissipators (dissipative 
process), transformers and gyrators (transformation be-
tween energy domains) and sources (interactions of sys-
tem with environment). Component behavior can be lin-
ear or nonlinear. Additional vertices impose conservation 
of energy at idealized connecting points between com-
ponents. Hybrid Bond graphs (HBG) are an extension of 
the bond graph formalism that allow some elements to 
have discrete states, giving the modeler the ability to 



create domain-independent models that can describe 
both continuous and discrete behaviors of a system [4]. 
A unique property of the HBG is the use of switching 
signals to turn energetic connections between HBG 
components on and off. Nonlinear systems are modeled 
by components that have time-varying parameters, i.e., 
their parameter values are functions of system variables.  

The HBG models for the RO system and the AES are 
shown in Figure 5.  The HBG model of the RO system 
was derived by decomposing the system into three prin-
cipal domains of operation. Given the pump-fluid sys-
tem, the mechanical and fluid domains are the primary 
energy domains that define the flow behavior in the sys-
tem. However, to take into account the effects of impuri-
ties in the water on the flow process, and the fact that 
these impurities are time varying, we explicitly model the 
fluid conductivity domain and its interactions with the 
flow process using bond graph elements. The energy 
interaction between the mechanical and the hydraulic 
domains is governed by the pump characteristics, which 
in our simplified models of the pump are represented by 
the pump efficiency. A primary innovation in our model 
design is the ability to capture the interaction between 
the hydraulic and conductivity domains in the bond 
graph using modulating signals.  

 

Figure 5: HBG model of RO system 

The HBG for the AES consist of three domains: hydrau-
lic, pneumatic and thermal. The hydraulic domain uses 
modulated source flows to model the amount of vapor 

being generated in the wick and the amount of vapor 
condensed in the heat exchanger. The pneumatic do-
main is modeled simply with a blower pushing air 
through a pipe modeled as a resistance. The thermal 
domain defines the primary behavior of the AES, and 
uses capacities to model the heat capacity in each sec-
tion of the AES loop: between the heating coil and the 
wick, at the wick, at the heat exchanger, and after the 
heat exchanger. Heat transfer between sections is de-
termined by whether the blower is on or off. When the 
blower is on heat is transferred by conduction, and when 
the blower is off heat is transferred by radiation.  

We have developed tools for translating the HBG mod-
els into (i) state space equations used by the observer 
for tracking system behavior, (ii) Temporal Causal Graph 
(TCG) models for qualitative fault diagnosis, and (iii) dis-
crete time models that are employed in the decision-
theoretic controller. The translation tools are presented 
elsewhere [16] and not discussed in this paper. 

DIAGNOSIS & FAULT-ADAPTIVE CONTROL 

FAULT DIAGNOSIS SYSTEM - Our model-based ap-
proach to fault detection and isolation (FDI) combines 
robust tracking of nominal system behavior using ex-
tended Kalman filter techniques [15], statistical fault de-
tection and symbol generation techniques, and a novel 
fault isolation method that is based on the qualitative 
analysis of the system dynamics immediately after the 
time point of fault occurrence followed by quantitative 
parameter estimation to uniquely isolate and identify the 
fault [12]. The extension of these methods to hybrid sys-
tems complicates the analysis in that discrete mode 
changes, and, therefore, model switches occur while 
tracking and analyzing system behavior. An automaton 
model is employed to switch system models when mode 
changes occur [11]. 

We have conducted extensive FDI experiments on a 
number of simulated fault scenarios on the RO system. 
These correspond to faults in the pump (loss of effi-
ciency and increased friction in the bearings), membrane 
(clogging), and the connecting pipes (blocks). Faults 
were introduced as abrupt changes in parameter values, 
i.e., a discrete change in the parameter value that is as-
sumed to occur at a point in time. We consider two faults 
in the RO system: (1) a 5% decrease in the recirculating 
pump efficiency (fault introduced at time step = 380), 
and (2) a 35% increase in bearing friction for the recircu-
lating pump (fault introduced at time step = 400). The 
fault magnitudes were chosen to ensure detection (after 
some delay). In both cases, there was a delay of about 
100 to 200 units in detecting the fault. For each sce-
nario, the qualitative fault isolation scheme required a 
set of measurement deviations to reduce the initial can-
didate set considerably, and parameter estimation con-
verged to the correct fault candidate. The estimated pa-
rameter values were within 5% of the actual change and 
quite acceptable for control purposes. Details of the di-
agnosis scheme are presented elsewhere [11, 12]. 
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FAULT ADAPTIVE CONTROL - To utilize control theory 
for resource management, a suitable model for the un-
derlying system has to be established. The system 
model captures the relationship between the observed 
system parameters, particularly those relevant to the 
requirement specifications, and the control inputs used 
to adjust these parameters [16]. Typically, an initial 
model is built for those system components with known 
dynamics, while parameter estimation techniques are 
used to identify the unknown parameters of the system. 

SWITCHING HYBRID SYSTEMS – The control ap-
proach proposed in this papers targets a special class of 
hybrid systems in which the controlled input to the sys-
tem is characterized by a finite control set. The following 
discrete-time form of the state space equations de-
scribes the continuous dynamics of this class of hybrid 
systems: 
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where k is the time index, x(k) ⊆ ℜn is the sampled form 
of the continuous state vector at time k, x(k) ⊆ ℜm is the 
discrete valued input vector at time k, and q(k) ∈ Q is the 
mode (discrete state) at time k. Q is a finite set of dis-
crete states that the system can be in. δ is the (partial) 
transition relation. We use X and U to denote the state 
space and the finite input set for the system, respec-
tively. For each mode, q ∈ Q the function Φq is continu-
ous in X and meets the conditions for existence and 
uniqueness of solutions for a set of initial states Xo ⊆ X. 
Note that in the above representation, at any time step k 
the system input defines the next mode of the system 
and the next state is computed from the corresponding 
state equation. 

The above model is general enough to describe a wide 
class of hybrid systems, including nonlinear systems and 
piecewise linear systems. The requirement that the input 
set is finite is not uncommon in practical computer-
controlled systems, where the control inputs are usually 
discrete and take values from a finite set. It is important 
to note, however, that the proposed online control ap-
proach is more suitable for systems with small number 
of control inputs, since the size of the search tree grows 
exponentially with the number of input switching signals 
which is proportional to the size of the input set. Many 
real-time computation systems have a limited finite 
(quantized) set of control inputs and, therefore, can be 
adequately captured using the above model. 

REQUIRMENT SPECIFICATIONS – In many real-life 
systems performance specifications can be classified 
into two categories. The first type is set-point specifica-
tions in which the underlying parameter or variable is 
required to be maintained at specific level or follow a 
certain pattern (trajectory). Examples of this type include 
car speed in cruise mode and water quality in a water 
supply system. The other type of specification, referred 
to as performance specifications, is used to optimize the 

system performance by minimizing or maximizing given 
performance measures, such as power consumption 
and system utilization. The performance measure is a 
function of the state, input, and output variables, typi-
cally, a weighted norm in which these variables are 
added together with different weights reflecting their con-
tribution to the overall system utility and/or cost. 

The objective of the control structure is to achieve the 
desired level of the set-point specifications in “reason-
able” time, maintain the system stable at the desired 
value, and optimize the given performance function. 
Note that, due to the nature of the system environment, 
it is common that the variables used to optimize the per-
formance functions are evaluated over a quantized finite 
domain. For example, the quality of the result of a given 
subsystem varies with respect to the size of the input, 
which can only take a finite set of values. 

In certain situations, the optimal operation point can be 
computed at design time, and used as a set-point objec-
tive for the system controller. In this case, the perform-
ance function can be translated into a linear or integer 
programming problem. We assume that optimal points 
for performance functions can be computed, therefore, 
the specification is given as one or more set-points, or a 
state-space region. The specifications may change dur-
ing operation, and the proposed approach can accom-
modate the changes.  

THE ONLINE CONTROL APPROACH – The online con-
troller tries to satisfy the specification by continuously 
monitoring the current state of the system and selects 
the input that can best satisfy the given specification. In 
addition, the controller is required to keep the system 
stable within the domain that satisfies the specification. 
In this setting, the controller is simply considered an 
agent that applies a given sequence of events in order to 
achieve a certain objective. 

In the online control approach, the controller explores 
only a limited forward horizon in the system state space 
and selects the next event based on the available infor-
mation. Considering the case of set-point specification, 
the selection of the next step is based on a distance 
map that defines how close the current state is to the 
desired set point. The distance map can be defined for 
each state x ⊆ ℜn as D(x) = ||x - xs||, where ||.|| is a proper 
norm for ℜn. In the case of performance specification, 
the input that minimizes (maximizes) a given utility func-
tion is selected. This function assigns to each state of 
the system a cost associated with reaching and main-
taining that state.  
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Figure 7: A Multi-level Control Structure 

In the above control scheme, the high level controller 
manages the interactions between the local controllers 
using an abstract model of the system that contains in-
formation relevant to the objectives of the high-level con-
troller. This includes, for instance, information about the 
interaction between the system components in terms of 
specific local variables that contributes to a global objec-
tive. The abstract dynamics then represents how these 
variables would changes in reaction to certain settings 
that the global controller can enforce through commands 
to the local controllers. The local controllers then try to 
optimize the performance of the local components using 
utility functions, but ensure conditions imposed by the 
global controller are not violated. 

Typically, in a multi-level control structure, the high level 
controller takes a long-term perspective, while the local 
controllers act to optimize their components on a short-
term basis. The high-level commands can then be 
viewed as a set of long-term restrictions on the local 
controllers directed towards satisfying a global objective. 
The local controller then acts to optimize the underlying 
component subject to the high level restriction.  

UTILITY FUNCTIONS FOR CONTROL – The optimizing 
component to safety control is introduced in the form of 
a multi-attribute utility function,∑ , where each V

i ii PV )( i 

corresponds to a value function associated with per-
formance parameter, Pi. The parameters, pi, can be con-
tinuous or discrete-valued, and they are derived from the 
system state variables, i.e., Pi(t) = pi(x(t)). The value 
functions employed have been simple weighted func-
tions of the form Vi(Pi) = wi Pi, where the weights take on 
values in the interval [−1 1], and represent the impor-
tance of the parameter in the overall operation of the 
system. The supervisory controller uses the system 
model to predict possible behaviors corresponding to 
different action sequences for a finite forward time hori-
zon, and then selects the action (i.e., control input) that 
maximizes the utility function. This process is then re-
peated for the next time step, and so on.  
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EXPERIMENTS 

We present a set of simulation experiments to illustrate 
multi-level fault adaptive control of the system. As a first 
step, the upper level controller was designed based on 
the information of arrival rates to RO (predicted), and the 
average production rates and corresponding average 
power consumed for each high level preset modes of the 
RO and AES systems. The corresponding performance 
index is defined as 
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where  and are average production flow rates 
and power consumed for the preset modes of the RO. 

 and  are the flow rates for the AES, and N is 
the number of horizons. By minimizing J with the arrival 
rates for 10 cycles, the RO and AES sequences are de-
termined shown in Fig. 8. 
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Figure 8: Arrival sequence and RO and AES modes 

The local controllers operate using the control com-
mands, i.e., the utility function coefficients provided by 
the high level controller. The utility function for the RO is 
given by: 
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Table 1 shows the parameters of the RO utility functions 
for different high level modes of operation determined by 
the average flow rate and power consumed, the parame-
ters used in the high level controller. Note that Mode 1 
for the RO is the off mode. Fig. 9 gives the results of RO 
local control in 10 cycles. Similarly, the AES runs for four 
normal-speed modes for 4 cycles (see Fig. 8) and is off 
in other modes.  
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Figure 9: RO local modes changes according to the 
high-level sequences of Figure 8  

The RO cycles through six local modes. Mode 1 repre-
sents high speed primary loop, mode 2 corresponds to 
the low speed primary loop, mode 3 the high speed sec-
ondary loop, mode 4 the low speed secondary loop, 
mode 5 represents the clean mode, and mode 6 corre-
sponds to purge (off).   
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Average 
flow rate 

Average 
power  

Mode 2 [18, 1, -10, -1] 12.25 0.41 
Mode 3 [26, 2, -10, -1] 18.96 0.73 
Mode 4 [32, 3, -50, -1] 23.64 0.95 

Table 1: Parameters of high-level RO system modes 

A second experiment was conducted with faults intro-
duced in the RO system at run time. Fig. 10 shows the 
behavior of the system under online control in the pres-
ence of fault.  
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Figure 10: System performance under online control 
with pipe blocking failure 



A block in a pipe (resulting in 35% increases its resis-
tance) was introduced at time t = 400 sec and was iso-
lated at time t = 430 sec. The online controller managed 
to compensate for the fault by increasing the time spent 
in the primary loop, i.e., step 1 mode of operation. The 
overall average utility in this case was only 0.93% less 
than the utility in the non-faulty situation. In Fig. 10, the 
original system output (no failure) is shown in dotted line 
for comparison. 

CONCLUSIONS 

In this paper, we have demonstrated a successful 
scheme for online model-based diagnosis and fault-
adaptive control of complex hybrid systems. In addition, 
we have successfully developed a hierarchical control 
schemes that combines the management of resource 
constraints at a global level with optimizing individual 
subsystem behavior at the local level. In future work, we 
will extend this scheme to larger systems with more dis-
tributed components. 
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