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Abstract

In this paper we present a consistency-based ro-
bust diagnosis approach for a class of temporal
causal systems modeled as timed failure propaga-
tion graphs. Timed failure propagation graphs are
causal models that capture the temporal character-
istics of failure propagation in dynamic systems. In
this paper, we define the problem of robust diagno-
sis for this class of systems and introduce an opti-
mal diagnosis algorithm that is robust with respect
to sensor faults. The paper outlines the proof for
the correctness and optimality of the proposed al-
gorithm.

Introduction

}@isis.vanderbilt.edu

are used to describe the nominal system behavior. In the case
of a fault, discrepancies between the observed behavior and
the predicted normal behavior occur. These discrepancies can
then be used to detect, isolate, and identify the fault depend-
ing on the type of model and methods used.

This paper presents a consistency-based approach for ro-
bust diagnosis of dynamic systems in which failure behavior
can be captured by a class of temporal causal models. Con-
sistency based diagnosis was introduced in a logical frame-
work in [Reiter, 1987 and was later extended [de Kleer
et al, 1994. In consistency-based diagnosis the behavior of
the system is predicted using a nominal system model and
then compared with observations of the actual behavior of
the system to obtain the minimal set of faulty component that
is consistent with the observations and the nominal model.
Consistency based diagnosis have been applied to develop
diagnosis algorithms for causal systefarwiche, 1998;

Diagnostic algorithms detect, isolate, and estimate systerfanyiche and Provan, 199@&nd temporal causal systems
failures using observed signals and measurements from t Samper, 1996; Console and Torasso, 1991

system sensors and actuators.
model that captures nominal and/or faulty behavior produce
fault hypotheses that explain the observed system condition
In many industrial systems, diagnosis is limited to signal
monitoring and fault identification via threshold logic, e.g.
detecting if a sensor value deviates from its nhominal valu
Failure propagation is modeled by capturing the qualitativ

Comparing these agains

8rhe diagnosis approach presented in this paper is concep-
?ually related to the temporal causal network approach pre-
sented ifConsole and Torasso, 199However, we focus on
incremental reasoning and diagnosis robustness with respect

éto sensor failures. The causal model presented in this paper

is based on the timed failure propagation graph (TFPG) intro-

Suced in[Misra, 1994: Misraet al, 1994. The TFPG model

association between sensor signals in the system for a UM closely related to fault models presentefRadalkaet al.,

ber of different fault scenarios. Typically, such associationslggl. Karsaet al, 1992: Mosterman and Biswas, 193thd

correspond to relations used by human experts in detectingc,  t o integrated fault diagnoses and process control sys-
and isolating faults. This approach has been effectively use

. : . ~tem[Karsaiet al, 2003. The TFPG model was extended in
e aehras 1" 1Abdebaect . 2004 o ncude mode dpendency cor
Visgvanadham and Johnson. 1988 Hessinal. 1990: straints on the propagation links, which can then be used to
Ishidaet al, 1984, ca se-cor’lse ehce diaar [ﬁ" o anf:i handle failure scenarios in hybrid and switching systems. The
Vis:/vanadhglm 19’87a'ul98]7kdiaqrtljosis dicltic?narie[d?ich- extended model is referred to as a Hybrid Failure Propagation

' o o Tag Graph (HFPG).
man and Bowden, 1985and expert systemiScherer and . . .
White, 1989: Tzafestas and Watanabe, 1990 In thls paper, we introduce .the main eIe_ments of the ro-
Model-based diagnosis (skerank, 1990; Hamschet al. bust diagnosis problem for a simplified version of the HFPG

1992; Patton, 1994and the references therein), on the othermOdeI' referred to as Simp'e _Timed Failu.re Propagation
hand, compares observations from the real system with th€/@Phs (STFPG), with a disjunctive propagation dependency,

predictions from a model. Analytical models, such as stat(?lII monitored discrepancies, and no mode switching. The

. — : . oposed algorithm is robust (degrades gracefully) with re-
equations, finite state machines, and predicate/temporal 'Ogél%e%t to sengor failures. We fo$ma?lly desc?ibe an ir):)cremental

*Funded, in part, by Boeing and the NASA ALS program (Con- optimal diagnosis procedure for this class of models. The
tract: NCC 9-159). proposed algorithm consists of two main procedures. The



first one generates consistent hypothesis from an initial state The sTFPG model captures observable failure propaga-
assignment while the second generates an optimal consisteaiins between sensors in practical systems. In this setting,
initial state assignment based on current state observation. sensors capture state deviations from nominal values. The
The paper is organized as follows. In Section 2, the simpleset of all observed deviations corresponds to the discrepancy
timed failure propagation graph model is introduced. Secset in the STFPG model. The propagation edges corresponds
tion 3 introduces the main elements of the diagnosis problerto causality (for instance, corresponding to energy flow) in
for timed causal systems modeled as sTFPG. In this sectiothe system dynamics. Due to the dynamic nature of the sys-
optimal diagnosis for STFPG is defined based on of the notiotem, failure effects take time to propagate between the sys-
of observed and hypothetical states and the matching betwed¢em components (such time in general depend on the system’s
them. Section 4 presents the optimal diagnosis algorithm. time constants as well as the size and time evolution of under-
lying failure). In many practical situations such delays can be

2 Simple timed failure propagation graphs computed analytically or by simulation of an accurate model.

. . Failure propagation in a STFPG has a simple semantics.
A STFPG is a labeled directed graph where the nodes reprépg state of a node indicates if the failure effects reached this
sent either failure modes, which are fault causes, or discre

Riode. Failure effects can reach a node from any of its pre-
ancies, which are off-nominal conditions that are the effec y b

t%l ey / i
; ; ecessors. Assuming= (v,v’) € E, then once a failure
of failure modes. Edges between nodes in the graph Cafsiect reaches at timet it must reaches’ at a timet’ where

ture propagation of failure effects over time in the dynamic, . . " ", « .t 11ax. Once a failure effect reaches
Z}’ sjerlr;. 5 o]rEmaIIy, asTFPG rr]nod.el is represented as a WPy m any of its predecessors its state will change permanently,
= (F\ D, B, tmin, tmax), where: and it will not be affected by any future failure propagation.
e [is a set of failure nodes In the rest of this paper we consider the scenario presented
e Dis a set of discrepancy nodes, withn D = & in Figure 1 This scenario corresponding to failure FM2 oc-
) curring at timet = 1, and two sensor failures; D2 (false

e tmin,tmax : £ — R assign to each edge e E its
minimum and maximum propagation time, respectively.3  The Diagnosis Problem

An edgee = (v,v") € Eindicates that a state change can an actual (physical) systerstate corresponds to the current
occur fromo to «” due to propagation effects. For an edgestate of all nodes in the STFPG model. Formally, a physical
e € E, we will use the notatiom.tmin ande.tmax to indi- ~ state a timet is a mapAS, : V — {ON,0FF} x R, where
cate the corresponding minimum and maximum time for fail-y/ s the set of nodes in the STFPG model. Therefa§(v)

ure propagation al'ong' the edgerespectively. This implies  genotes the state of a node Here a stat®©Nindicates that
that for (v,v') € E it will take at least (at mostjv.v’).tmin  the fajlure effect reached this node, otherwise it is SEF6:
((v.v").tmax) time for the fault to propagate fromto v’. For e will write AS(v).state to indicate the first element of the
all e € E'we assume thdl < e.tmin < e.tmax. function (the state) andlS(v).time to indicate the second

We assume that STFPG models do not contain self loopglement (state change time). For instance in the scenario de-
and that failure modes are root nodes, i.e., they cannot be &yiped for Figure 1, we havéSs;(FM2) = {ON1}. Given
destination of any edge. Also, every discrepancy must be gt fajlure effects are permanent, the state of a node once
successor of another discrepancy or a failure mode. changed will remain constant after that.

Figure 1 shows example of an sTFPG model. In this fig- The aim of the diagnosis process is to identify the current
ure rectangles represent the failure modes while bold-lingcya| state of the system. In the STFPG setting, however, dis-
circles represent discrepancies. Edges between nodes capapancies are observable while failure modes are not. In ad-
ture failure/discrepancy propagation in the system. Propgition, due to possible sensor failures, the observed state may
agation through edges are parameterized by the intervglot pe consistent with the STFPG model constraints. There-
[e.tmin, e.tmax].  Sequences of alarms are identified by fore the actual state cannot be identified with absolute cer-
shaded discrepancies. The time at which the alarm is obyinty. The diagnosis process will then try to find an estimate
served is shown above the corresponding discrepancy. of the current state of the system that is consistent with the ob-

servations, and is as close as possible to the observed state. In
= this section, the diagnosis problem is formally defined based
on the notions of observed and hypothetical states, state con-
sistency, and observation matching.

3.1 Observed states

An observed statat timet is defined as a mag; : D —

{ON, OFF} x R. Observed states are only defined for discrep-
ancies. Similar to Actual states, the m&ps unique for each
time instanceé. We assume that sensor signals are permanent
so that the observed state of a discrepancy once changed will
remain constant after that. This also applies to faulty sensors.

Figure 1: A simple timed failure propagation graph



Observed states, due to potential sensor failures, may nabserved state of is consistent withD thend remains in
be consistent with the failure propagation graph model tem)’. Otherwise,d must be inconsistent with one or more of
poral constraints. Here, consistency is defined in terms oits adjacent nodes. In this case the Bets split, such that
the causality and propagation timing information expressedhe conflicting nodes are separated. New T-consistent sets are
in the sSTFPG model. In particular, observed state consistenayenerated by removing conflicting nodes.
is defined as a binary relation on the set of observed states .
for adjacent nodes at a given time. Formally, for two nodes3-2 Hypothetical states
d'.,d € D we say thatd is timing consistent, or simplff-  An hypothetical statelefines node states and the interval at
consistentwith d’ at timet¢ if (d’,d) € E and any of the which each node changes its state. In contrast to the ob-
following holds: served state, a hypothetical state is defined for all the STFPG
1. Sy(d').state = OFFandsS, (d).state = OFF, nodes. Formally a hypothetical state isa mdp: V —
, {0N, OFF} x RxR. Similar to actual states, hypothetical states
2. Sy(d )'St,ate.: ONa’]dSt(d)'State = OFFand are defined for both discrepancies and failure modes. We will
t < Sy(d’).time + (d', d).tmax, write H (v).terl to indicate the estimated earliest time of state

3. Si(d").state = ONandS;(d).state = ONand change and{ (v).tlat to indicate the estimated latest time.
(d',d)tmax > Si(d).time — Sy(d').time >  Similarto actual and observed states, a nodéth OFFstate
(d',d).tmin has activation time of exactlg, that is H (v).state = OFF

The above conditions simply state thétd are T-consistent MPliesH (v).terl = H(v).tlat =0.

at timet if their observed states do not contradict the propaga- HypPothetical states are an estimation of the current state
tion temporal constraints defined by the STFPG model. Th&f all nodes in the system and the time period at which this

T-consistency relation at timeis denoted”,. For example, Node changed its states. An estimation of the current state,
in Figure 1,Cy = Cy = D x D. Attimet = 9, we have however, must be consistent with the STFPG model to be use-
{(D4, D6), (D5, D7), (D3, D9), (D9, D10)} C Cy while  ful- Similar to observed states, the consistency of hypothet-

(D3,D6) ¢ Cy, although(D3, D6) € Cs. We also need ical states depends on the underlying sSTFPG model and the
to define the notion of weak consistency. For two nodesurrent time. Formally, we say the hypothetical stéeis

d',d € D where we say thad is weakly T-consistent, or consistentf for any noded the following conditions hold:

simply WT-consistentwith d’ at timet if (d’, d) € E and any 1. H,(d) = OFFand for all(v,d) € E:

of the following holds: (a) H,(v) = OFF or
1. Si(d').state = OFFandS;(d).state = ON (b) Hi(v) = ONA t < H¢(v).tlat + (v, d).tmax
2. Sy(d').state = ONandS;(d).state = ONand 2. H,(d) = ONand all the following hold:

; f : N
Si(d)-time < (d',d).tmin + Sy (d').time (a) He(d).terl > minyepy, {Hi(v).terl + (v, d).tmin},

The WT-consistency relation at tinmeis denotedi?,. For b) H,(d).tlat < mi H tlat d).t
example,(D1, D2) € Ws. Note thatC; N W; = @ and in (b) Hi(d).tlat < minyeu, {Hi(v).tat + (v, d).tmax}
generalC;, W, are not a cover foD x D. Now we extend Ua = {v € V|(v,d) € E andH,(v).state = ON

the notion of consistency to arbitrary discrepancy sets. A sethe above simply says théf is consistent if every node state
of discrepancied)’ C D is said to be T-consistent if for all is consistent with the state of its predecessors. Namely, the
d',d e D" with (d',d) € E: state of a nodéd can beOFFat timet if there is a possibility

o (d',d)€Cy,or that a failure did not propagate and reaicht timet from any

/7 . N . of its predecessors. Also, the state of a nddmn beONat

o (d',d) e Wyn((Bd" € D')(d",d) € EA(d",d) € Ct)  timet if there is a possibility that a failure have reachest
Note that the above condition is true by default for any non-or beforet from any of its predecessors. A consistent hypo-
adjacent discrepancies. We define the setupiportsat time  thetical state will be referred to ashgpothesis In general,
t, to be the set all T-consistent sets with maximum size (numthere are infinitely many consistent hypothesis at any time
ber of discrepancies). This set will be denot&d and the A consistent hypothetical state is generated from an initial
size of its sets will be denotetl. For example, in Figure 1, state assignment to a subset of the system nodes. Formally,
Ug=", =D,y =V, ={D—-{D1},D—{D2}}. Note let V' C V be a set of nodes. A partial hypothetical state
that the set of all T-consistent set is a cover forand that assignment attimeis amapPH; : V' — {0N, 0FF} xRxR.
Uy = D inany sTFPG. The mapPH, is said to be consistent fdr’ if the PH is

In temporal causal systems, sensor signals are received sasnsistent with respect to the subgraph of the sSTFPG model
guentially. In this case, the s&t can be computed efficiently restricted to thel’”” nodes. In this case it is referred to as
by maintaining a list of T-consistent sets, and updating thisa partial hypothesis. A hypothesis defined oVemay be
list when a new sensor signal is received or a time-out everneferred to as a complete hypothesis.
is generated automatically indicating a missing sensor signal For an initial state assignmeRtH,, anextensionio PH, is
(according to the current list of T-consistent sets). a (complete) hypothesH,; satisfyingH,|,» = PH;, where

The set of T-consistent sets can be iteratively updated a#, |y is the restriction of the map/, to the subset”’. We
follows. Letd be the discrepancy corresponding to a new sensay thatP H; is avalid state assignmeiftthere exists at least
sor signal, and IeF'C(d) be the current set of all T-consistent one extension fo’ H;. Given thatPH, is a valid state as-
sets that containgd. Then for anyD’ € TC(d), if the new  signment fori’’ C V one can construct an extensiéh by



assigning state values to the remaining no#fes}’’ by prop- e H;(d).state = OFF A Si(d).state = ON and

agating the current state assignment backward and forward to <

adjacent states. The procedure for hypothesis generation will o Hi(d)terl <t < Hy(d) tlat

be explained later in more detail. The set of all discrepancies that are weakly matched with a
We define a state equivalence relation of hypothesis as foRypothesis/ is denotedV M (H,). Clearly, for any hypoth-

lows. LetH andH’ be two hypothetical states at timeWe  esisH; we haveSM (H;) C WM (H,). The rank,R(H;)

say thatd andH' are state equivalent if of hypothesisH, is defined as the size of its weakly matched
setW M (H,). Clearly, for a sTFPG witllV discrepancies we
(Vv € V) H(v).state = H'(v).state haveR(H,) < N.

A maximal hypothesis with the highest rank at tims re-

The state equivalence relationship is denated It is easy ; ; . : )
to see that the equivalence kernel of this relationship is finite‘ferre‘j as aliagnosis We will write ; to denote the highest

Namely, the set of all state-equivalent hypothesis sets is finitE?1k at timet. Thediagnosis seat timet as the set of maxi-
In fact, the equivalence kernel ef, is isomorphic to the set mal hypothesis with .ranRt. Thediagnosis problensan then
of all binary assignments t%. be stated as follows:

We now define an order relation on state equivalent hy-  Given a set of sensor signals at time&ompute the
potheses (equivalence classes=). Let H and H’ be two diagnosis set (hypotheses with maximal ranks) cor-
hypothetical states at timie Then we say thatl’ is contained responding to the underlying observed state.

in H, written asH’ < H if: Assuming a set of uncorrelated sensors that are more likely
(Vv € V) [H'(v).terl, H' (v).tlat] C [H(v).terl, H(v).tlat] ~ Notto fail (failure rate is less tha§0%), it is easy to see that
the diagnosis set defined above is the most likely estimation

We extend this relation to the partial ordelin the usual way  of the actual state of the system nodes based on the observed
(by including the identity relation restricted to the underlying state.
equivalence class). Clearlyf’ < H impliesH' =, H. A
hypothesidd is said tomaximalif there is no other hypothesis i i i i
H' such thati < H'. In other words, any hypothetical state 4 The Diagnosis Reasoning Algorithm
H’ satisfyingH < H' is not consistent. The aim of the diagnosis reasoning process is to find a consis-
Proposition 1 For any hypothesis there exists a unique tent and plausible explanation (in the form of a hypothetical
maximal hypothesigl* such that < H* state) of the current system state based on sensor measure-

= ments (observed state). Typically, the system starts with no

The proof of the above proposition is direct based on thesensor signals (all discrepancies are in@#eF state). When
definition of consistent hypothetical states. The maximal hy-a failure occur, sensor signals are generated and received se-
pothesis containingl can be computed by iteratively extend- quentially by the diagnosis reasoner, which in turn reacts
ing the state change period for each node while maintainingy generating the corresponding hypotheses, from which the
consistency between the states. state of failure modes can be identified.
Let PH, be a valid state assignment, and Iét be a hy-

pothesis. We say thdf, is maximal forPH, if H; isanex- 4.1 Hypothesis generation
tension forP H; and for any other extensiaH] that is state-

> A hypothesis must be generated from an initial state assign-
equivalent toH; we haveH; < H,. yp g 9

ment for at least one of the system nodes. As discussed ear-
3.3 The diagnosis set Iier_, s'ut_:h state assignments must b<_a valid. By d_efinition,' a
. . ) . _valid initial state assignment is consistent within its domain
As mentioned earlier, the task of the diagnosis process is tgf nodes and can be extended to a hypothesis. However, apart
provide a set of consistent state estimation (hypotheses) thgom the consistency assumption, such definition of validity
closely matches the observed state of the system. We say thigthot constructive, namely, one cannot test or generate a valid
a hypothesid?, strongly matches a discrepan¢yf state assignment from this definition.
e H,(d).state = S,(d).state, and One way to %r}js[ur?ﬂvaliq{ity of a}co%sis%gnt hypoth_etical
. state assignme : V' — {0ON, 0FF} x R x R is to restrict
o Hy(d).terl = Hy(d).tlat = S;(d).time the elements of the s&t’ such that they do not have common
The set of all discrepancies that are strongly matched with ancestors fron¥ — V', that is, they are causally independent
hypothesisH is denotedSM (H,). A hypothesisi, weakly  with respect to the remaining nodes. Formally, a sub$etf

matches a discrepandjif: V is causally independerittfor all v € V':
o H;(d).state = Sy(d).state, and 1. (I eV’) (V,v)eE,or
o H(d).terl < S;(d).time < Hy(d).tlat 2. (W e V(W eV —-V') =({v,v'} C Reach(v"))
or whereReach(v”) is the set of all nodes reachable fra
e H,(d).state = ON A S;(d).state = OFF, and in the sTFPG graph. Intuitivelyi”’ is causally independent

< Ho(d)4l if the state of each node i’ can be either explained by
o < Hy(d).tlat the state of another node WY or does not share a common
or ancestor from outsid&’ with another node ifv"’.



Let PH be a consistent state assignment for a causally in- e Else:

dependent se¥’ C V. We define the backward extension _ / . _
operation,BProp, on the setl’”’, the assignment mapH, PH,(U)'btate = ON . /
and anode € V — V' where(v,v') € E for somev’ € V' - PH'(v)terl - = minyey, {PH(v') terl +
such that’ does not have a predecessoiih The outcome (v, v').tmin}, .
of this operation is a new state assignment e’ for the - PH'(v)tlat = minyey, {PH(v').tlat +
setV’ U {v}, wherePH'|y, = PH andPH'(v) is assigned (v, v').tmax}
as follows: U, ={v € V'|(v/,v) € EandPH (v').state = ON
o If PH(v').state = OFF It is easy to verify that the state assignm&fi’ is consistent
- PH'(v)state = OFF PH'(v).terl =  forV’'U{v}giventhatPH is consistent fob’. Similar to the
PH'(v).tlat = 0 case of backward propagation we have the following result.
e If PH(v').state = ON Proposition 3 In the FProp operation described above, the

setV’ U {v} is causally independent and the state assignment
PH' is maximal with respect t&H.

Proof (Outline): V" only adds a node that has a predecessor
in V'’ so it inherits the consistency &'. The maximality of

— PH'(v).state = ON
— PH'(v).terl = PH(v').terl — (v,v).tmax,
— PH'(v).tlat = PH(v").tlat — (v, v").tmin

Itis easy to verify that the state assignmé&dt’ is consistent P H’ is direct from the definition of consistency. a
for V' U {v} given thatPH is consistent fol/’. In addition Similar to the case of backward propagation, the above re-
we have the following result. sult shows that iterative applications of tRBrop operation

Proposition 2 In the BProp operation described above, the On & consistent hypothetical assignmétit over a causally

setV’ U {v} is causally independent and the state assignmedpdependent_set will result in a maximal cor_lsistent hypotheti-
PH' is maximal with respect t& . cal state assignment fétH, over a causally independent set.

L " , _ Also, it is easy to see that the iterative applicatiorF&frop
Proof (Outline): Assume thal’” = V" U {v} is not causally  yj|| terminate after finite number of steps at which all the
independent, then there must exist two nodles thatdo not  jecedents oF” are assigned a state value.
have aﬁpredecessorw/ and share a common ancestor from - gagsed on the above operations we can now define a proce-
V' — V", Clearly one of these nodes mustheHowever, if  qyre to generate a hypothesis from an initial state assignment,
v shares a common ancestor with a ndde V' thenv’ must e il refer to such procedure atypothesis. The opera-
also share the same ancestor wittontradicting the assump- jon Hypothesis accepts as an input a hypothetical state as-
tion thatV’ is causally independent. The proof of maximality signmentP H over a causally independent dét C V and
is direct from the definition of consistent hypothesis. O atyns a hypothetical staf,. The procedure-lyaothesis

A direct consequence of the above result is that, iteratives qefined in the following algorithm.

applications of theBProp operation on a consistent hypo-  The Hypothesis procedure described in Algorithm 1 is not
thetical assignmenf H over a causally independent set will geterministic, as it will generate differeft depending on the
result in a maximal consistent hypothetical state assignmeng|ection fromPSet. However. it is easy to see that this al-
for PH, over a larger causally independent set. Also, clearlyyqrithm will terminate after a finite number of steps. Clearly,

that iterative application oBProp will terminate at certain  he generated? is complete, namely defined for all€ V.
point at which each node in the underlying set has either §,oreover we have the foIIO\;ving result.

predecessor from inside the set or no predecessor at all in the N .

sTPFG model (a failure mode in this case). Proposition 4 Let V' C V' be a causally independent set
Let V' be a causally independent set of nodes Bidfibe ~ and PH be consistent hypothetical assignment ¥ar Then

a consistent state assignment 6t We define the forward ~any hypothetical statél output fromHypothesis(V’, PH)

extension operatiorFProp, on the sefl’’, the assignment IS consistent and maximal with respect/té!.

map PH, and a noder € V — V' where(v',v) € Efor  proof (Outline): We already shown that recursive application

somev’ € V' and in addition: of the BProp andFProp operators generate a maximal con-
" R " N sistent set with respect to the initial state assignnidiit Let

(W eV=V) (vi,v) € B — (Vd € V))v" & Reach(d) V" =V.,andPH" = H just after the termination of the re-

From the above, the external nodshould have a predeces- cursiveBProp and FProp operations. It is easy to see that

sorinV’. In addition, any other predecessondhatis notin V" does not contain any descendants frgm- V". In ad-

V' should not be reachable from a nodelih These condi- dition, given thatP H” is maximally consistent, every node

tions onv are required to ensure correct causal propagatiorin V"' is either explained by another nodeliff’ or is a root

The outcome of thé&Prop operation is a new state assign- node (failure mode) in the sSTFPG mode. Therefore, assign-

ment mapP H' for the setV’ U {v}, wherePH'|y, = PH  ing anOFFstate to all the nodes ii — V" will preserve the

and andP H’ (v) is assigned as follows: consistency and maximality of the state assignment. O
o If (V' € V') (v/,v) € E — PH(v').state = OFF The above results S|.mply says that a consistent state assign-
) , ment over a causally independent set is a valid state assign-
- PH'(v).state = OFF PH'(v).terl = ment,asitcan always be extended to a (complete) hypothesis.

PH'(v).tlat =0 It is important to note that the number of choices available in



Algorithm 1 TheHypothesis procedure

input: V' C VandPH; : V' — {ON,0FF} x R x R
Ve=V'
H = PH,
defineln(X) := {v € X|(WV' € X) (v,v') &€ E}
definePSet(X) := {v e V — X|(Fv' € In(X)) (v,v’) €
E}
while PSet(V.) # @ do

selectv from PSet(V.)

H = BProp(H,V,,v)

Ve =V, U {v}
end while
defineODC(X) := U,ecxReach(v) — X
defineTSet(X) := {v € V- X|ODC(X) xvNE = &}
defineCSet(X) := {v € TSet(X)|(F' € X) (v',v) €
E}
while CSet(V,) # @ do

selectv from CSet(V;)

H = FProp(H,V,,v)

Ve=V.U{v}
end while

forall ve V-V, do
H(v).state = OFF
H(v).terl = H(v).terl =0
end for

Based on the above definitions we can have the following
result for the maximum hypothesis ran®;, at timet. Recall,
that )\, refers to the size of the maximal T-consistent set.

Proposition 5
e < Ry < N

Proof (Outline): For the lower bound, consider an initial
state assignment that strongly matches a maximal set of ST-
consistent discrepancies € €);. By definition this assign-
ment is a valid one and, therefore, can be extended to a com-
plete hypothesisf, which preserves the state of the initial
assignment. The rank df must be greater or equal tg in
this case. A4{ will be strongly matching with the set.
For the upper bound assume there exists a hypothesis with a
rankr > ;. This means that it can match the state afis-
crepancies. It can be shown from the definition of hypothesis
consistency and T-consistent set that such set of discrepancies
must be T-consistent. This contradicts thatis the largest
size of T-consistent sets at the current titme O

The above result have several important consequences.
The first is that, the best possible initial state assignment
should be a one that exactly matches the observed states of
any discrepancy set ift;. Another important implication is
that if u; = ¢ then the optimal diagnosis can be obtained
directly applying theHypothesis operation to each set in,.

Note that the value of; andy; are time dependent and they
reflect the existence of faulty sensors (as they introduce in-
consistency between observed states).
the above Hypothesis procedure is finite and therefore, the ] ] ]
number of all different hypotheses that can be generated for4-3 ~Generating the diagnosis set
givenV’, PH is finite. Initially, at the start; = 0, we haveR, = N (N is the num-
. e ber of discrepancies in the model.) Given that consistency be-
4.2 Hypothetical state initialization tween nodes can only be invalidated with new sensor signals,
The previous section shows that it is possible to generate e maximum rank®k, is a monotonically decreasing function
hypothesis from a consistent state assignment over a set of time. Clearly, if there is no sensor failure (more precisely,
causally independent nodes. To generate a diagnosis, the uneonsistency between observed discrepancy staa)ll
derlying hypothesis must to be of the highest possible rankiemain at its maximum valu®’. The following result shows
namely, maximally matching with the current observed statethat it is possible to compute the optimal hypothesis for any
Clearly the rank of the hypothesis is dependent on the initiakTFPG model with a given observed state.
state assignment.

Intuitively, a valid initial set that matches the current ob- . : . o -
served sta)t/e is favorable, as such a set can lead to a higﬂﬁOblem of finding the diagnosis set at timis decidable.
ranking hypothesis. The support detdiscussed earlier pro- Proof (Outline): We show early that the s@ is finite and
vides a collection of maximal consistent discrepancy stateshe number of hypotheses generated for each state assignment
The problem, however, is that the underlying sets may not bé also finite. Therefore, the optimal set of hypotheses can be
causally independent and, therefore, there is no guarantee thatttained by running the procedusiypothesis finite number
they can be extended to a consistent hypothetical state. of times for each element ;. O

To generate a valid initial state assignment we need to add Because of the complex nature of the consistency condi-
the condition of causal independence to the timing consistions, there does not seem to be a direct way to generate an
tency requirement for the state assignment. To this end, a septimal diagnosis starting from an initial assignment from the
D’ C D is said to be strongly T-consistent, or ST-consistentset();. However, it is possible to reduce the search for optimal
for short, if D’ is both T-consistent and causally independenthypothesis by eliminating those paths that could not improve

We define theonsistency indeat timet, denotedy; to be  the current maximal ranking.
the size of the largest possible ST-consistent set.eVitence At the occurrence of every event (sensor signal or time-
setat timet, is the set of all ST-consistent sets with sjze  out) a failure report is generated from the set of optimal hy-
This set will be denote€,. Similar to the the se¥, the set potheses. This report consists of the set of all consistent state
Q; can be computed incrementally by maintaining a list of allassignments that maximally matches the current set of ob-
ST-consistent sets, and updating this set when a new senssgrvation. In this report, any observed state that does not
signal is received. (weakly) match the current hypothesis is considered faulty.

return H

Proposition 6 For a given sTFPG and observed stdtehe
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alarms. scale systemslEEE Trans. Syst., Man and Cybernetics
15(3):327-333, 1985.
5 Conclusion [Karsaiet al, 1994 G. Karsai, J. Sztipanovits, S. Padalkar,

In this paper we introduced an consistency-based approach and C. Biegl. Model based intelligent process control for
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