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Abstract

In this paper we present a consistency-based ro-
bust diagnosis approach for a class of temporal
causal systems modeled as timed failure propaga-
tion graphs. Timed failure propagation graphs are
causal models that capture the temporal character-
istics of failure propagation in dynamic systems. In
this paper, we define the problem of robust diagno-
sis for this class of systems and introduce an opti-
mal diagnosis algorithm that is robust with respect
to sensor faults. The paper outlines the proof for
the correctness and optimality of the proposed al-
gorithm.

1 Introduction
Diagnostic algorithms detect, isolate, and estimate system
failures using observed signals and measurements from the
system sensors and actuators. Comparing these against a
model that captures nominal and/or faulty behavior produces
fault hypotheses that explain the observed system condition.

In many industrial systems, diagnosis is limited to signal
monitoring and fault identification via threshold logic, e.g.,
detecting if a sensor value deviates from its nominal value.
Failure propagation is modeled by capturing the qualitative
association between sensor signals in the system for a num-
ber of different fault scenarios. Typically, such associations
correspond to relations used by human experts in detecting
and isolating faults. This approach has been effectively used
for many complex engineering systems. Common industrial
diagnosis methods include fault trees[Himmelblau, 1978;
Viswanadham and Johnson, 1988; Hessianet al., 1990;
Ishida et al., 1985], cause-consequence diagrams[Rao and
Viswanadham, 1987a; 1987b], diagnosis dictionaries[Rich-
man and Bowden, 1985], and expert systems[Scherer and
White, 1989; Tzafestas and Watanabe, 1990].

Model-based diagnosis (see[Frank, 1990; Hamscheret al.,
1992; Patton, 1994] and the references therein), on the other
hand, compares observations from the real system with the
predictions from a model. Analytical models, such as state
equations, finite state machines, and predicate/temporal logic
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are used to describe the nominal system behavior. In the case
of a fault, discrepancies between the observed behavior and
the predicted normal behavior occur. These discrepancies can
then be used to detect, isolate, and identify the fault depend-
ing on the type of model and methods used.

This paper presents a consistency-based approach for ro-
bust diagnosis of dynamic systems in which failure behavior
can be captured by a class of temporal causal models. Con-
sistency based diagnosis was introduced in a logical frame-
work in [Reiter, 1987] and was later extended in[de Kleer
et al., 1992]. In consistency-based diagnosis the behavior of
the system is predicted using a nominal system model and
then compared with observations of the actual behavior of
the system to obtain the minimal set of faulty component that
is consistent with the observations and the nominal model.
Consistency based diagnosis have been applied to develop
diagnosis algorithms for causal systems[Darwiche, 1998;
Darwiche and Provan, 1996] and temporal causal systems
[Gamper, 1996; Console and Torasso, 1991].

The diagnosis approach presented in this paper is concep-
tually related to the temporal causal network approach pre-
sented in[Console and Torasso, 1991]. However, we focus on
incremental reasoning and diagnosis robustness with respect
to sensor failures. The causal model presented in this paper
is based on the timed failure propagation graph (TFPG) intro-
duced in[Misra, 1994; Misraet al., 1994]. The TFPG model
is closely related to fault models presented in[Padalkaret al.,
1991; Karsaiet al., 1992; Mosterman and Biswas, 1999] and
used for an integrated fault diagnoses and process control sys-
tem[Karsaiet al., 2003]. The TFPG model was extended in
[Abdelwahedet al., 2004] to include mode dependency con-
straints on the propagation links, which can then be used to
handle failure scenarios in hybrid and switching systems. The
extended model is referred to as a Hybrid Failure Propagation
Graph (HFPG).

In this paper, we introduce the main elements of the ro-
bust diagnosis problem for a simplified version of the HFPG
model, referred to as Simple Timed Failure Propagation
Graphs (sTFPG), with a disjunctive propagation dependency,
all monitored discrepancies, and no mode switching. The
proposed algorithm is robust (degrades gracefully) with re-
spect to sensor failures. We formally describe an incremental
optimal diagnosis procedure for this class of models. The
proposed algorithm consists of two main procedures. The



first one generates consistent hypothesis from an initial state
assignment while the second generates an optimal consistent
initial state assignment based on current state observation.

The paper is organized as follows. In Section 2, the simple
timed failure propagation graph model is introduced. Sec-
tion 3 introduces the main elements of the diagnosis problem
for timed causal systems modeled as sTFPG. In this section,
optimal diagnosis for sTFPG is defined based on of the notion
of observed and hypothetical states and the matching between
them. Section 4 presents the optimal diagnosis algorithm.

2 Simple timed failure propagation graphs
A sTFPG is a labeled directed graph where the nodes repre-
sent either failure modes, which are fault causes, or discrep-
ancies, which are off-nominal conditions that are the effects
of failure modes. Edges between nodes in the graph cap-
ture propagation of failure effects over time in the dynamic
system. Formally, a sTFPG model is represented as a tuple
G = (F, D,E, tmin, tmax), where:

• F is a set of failure nodes

• D is a set of discrepancy nodes, withF ∩D = ∅
• E ⊂ V × V is a set of edges, whereV = F ∪D

• tmin, tmax : E → R assign to each edgee ∈ E its
minimum and maximum propagation time, respectively.

An edgee = (v, v′) ∈ E indicates that a state change can
occur fromv to v′ due to propagation effects. For an edge
e ∈ E, we will use the notatione.tmin ande.tmax to indi-
cate the corresponding minimum and maximum time for fail-
ure propagation along the edgee, respectively. This implies
that for(v, v′) ∈ E it will take at least (at most)(v.v′).tmin
((v.v′).tmax) time for the fault to propagate fromv to v′. For
all e ∈ E we assume that0 ≤ e.tmin ≤ e.tmax.

We assume that sTFPG models do not contain self loops
and that failure modes are root nodes, i.e., they cannot be a
destination of any edge. Also, every discrepancy must be a
successor of another discrepancy or a failure mode.

Figure 1 shows example of an sTFPG model. In this fig-
ure rectangles represent the failure modes while bold-line
circles represent discrepancies. Edges between nodes cap-
ture failure/discrepancy propagation in the system. Prop-
agation through edges are parameterized by the interval
[e.tmin, e.tmax]. Sequences of alarms are identified by
shaded discrepancies. The time at which the alarm is ob-
served is shown above the corresponding discrepancy.
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Figure 1: A simple timed failure propagation graph

The sTFPG model captures observable failure propaga-
tions between sensors in practical systems. In this setting,
sensors capture state deviations from nominal values. The
set of all observed deviations corresponds to the discrepancy
set in the sTFPG model. The propagation edges corresponds
to causality (for instance, corresponding to energy flow) in
the system dynamics. Due to the dynamic nature of the sys-
tem, failure effects take time to propagate between the sys-
tem components (such time in general depend on the system’s
time constants as well as the size and time evolution of under-
lying failure). In many practical situations such delays can be
computed analytically or by simulation of an accurate model.

Failure propagation in a sTFPG has a simple semantics.
The state of a node indicates if the failure effects reached this
node. Failure effects can reach a node from any of its pre-
decessors. Assuminge = (v, v′) ∈ E, then once a failure
effect reachesv at timet it must reachesv′ at a timet′ where
e.tmin ≤ t′ − t ≤ e.tmax. Once a failure effect reachesv′
from any of its predecessors its state will change permanently,
and it will not be affected by any future failure propagation.

In the rest of this paper we consider the scenario presented
in Figure 1. This scenario corresponding to failure FM2 oc-
curring at timet = 1, and two sensor failures; D2 (false
alarm) and D6 (missing alarm).

3 The Diagnosis Problem
An actual (physical) systemstate corresponds to the current
state of all nodes in the sTFPG model. Formally, a physical
state a timet is a mapASt : V → {ON, OFF} × R, where
V is the set of nodes in the sTFPG model. Therefore,AS(v)
denotes the state of a nodev. Here a stateONindicates that
the failure effect reached this node, otherwise it is set toOFF.
We will write AS(v).state to indicate the first element of the
function (the state) andAS(v).time to indicate the second
element (state change time). For instance in the scenario de-
scribed for Figure 1, we haveAS5(FM2) = {ON, 1}. Given
that failure effects are permanent, the state of a node once
changed will remain constant after that.

The aim of the diagnosis process is to identify the current
actual state of the system. In the sTFPG setting, however, dis-
crepancies are observable while failure modes are not. In ad-
dition, due to possible sensor failures, the observed state may
not be consistent with the sTFPG model constraints. There-
fore, the actual state cannot be identified with absolute cer-
tainty. The diagnosis process will then try to find an estimate
of the current state of the system that is consistent with the ob-
servations, and is as close as possible to the observed state. In
this section, the diagnosis problem is formally defined based
on the notions of observed and hypothetical states, state con-
sistency, and observation matching.

3.1 Observed states
An observed stateat time t is defined as a mapSt : D →
{ON, OFF} ×R. Observed states are only defined for discrep-
ancies. Similar to Actual states, the mapSt is unique for each
time instancet. We assume that sensor signals are permanent
so that the observed state of a discrepancy once changed will
remain constant after that. This also applies to faulty sensors.



Observed states, due to potential sensor failures, may not
be consistent with the failure propagation graph model tem-
poral constraints. Here, consistency is defined in terms of
the causality and propagation timing information expressed
in the sTFPG model. In particular, observed state consistency
is defined as a binary relation on the set of observed states
for adjacent nodes at a given time. Formally, for two nodes
d′, d ∈ D we say thatd is timing consistent, or simplyT-
consistent, with d′ at time t if (d′, d) ∈ E and any of the
following holds:

1. St(d′).state = OFFandSt(d).state = OFF,

2. St(d′).state = ONandSt(d).state = OFFand
t < St(d′).time + (d′, d).tmax,

3. St(d′).state = ONandSt(d).state = ONand
(d′, d).tmax ≥ St(d).time − St(d′).time ≥
(d′, d).tmin

The above conditions simply state thatd′, d are T-consistent
at timet if their observed states do not contradict the propaga-
tion temporal constraints defined by the sTFPG model. The
T-consistency relation at timet is denotedCt. For example,
in Figure 1,C0 = C2 = D × D. At time t = 9, we have
{(D4, D6), (D5, D7), (D3, D9), (D9, D10)} ⊂ C9 while
(D3, D6) 6∈ C9, although(D3, D6) ∈ C8. We also need
to define the notion of weak consistency. For two nodes
d′, d ∈ D where we say thatd is weakly T-consistent, or
simplyWT-consistent, with d′ at timet if (d′, d) ∈ E and any
of the following holds:

1. St(d′).state = OFFandSt(d).state = ON,

2. St(d′).state = ONandSt(d).state = ONand
St(d).time < (d′, d).tmin + St(d′).time

The WT-consistency relation at timet is denotedWt. For
example,(D1, D2) ∈ W5. Note thatCt ∩ Wt = ∅ and in
generalCt,Wt are not a cover forD × D. Now we extend
the notion of consistency to arbitrary discrepancy sets. A set
of discrepanciesD′ ⊆ D is said to be T-consistent if for all
d′, d ∈ D′ with (d′, d) ∈ E:

• (d′, d) ∈ Ct, or

• (d′, d) ∈ Wt∧((∃d′′ ∈ D′)(d′′, d) ∈ E ∧ (d′′, d) ∈ Ct)
Note that the above condition is true by default for any non-
adjacent discrepancies. We define the set ofsupportsat time
t, to be the set all T-consistent sets with maximum size (num-
ber of discrepancies). This set will be denotedΨt and the
size of its sets will be denotedλt. For example, in Figure 1,
Ψ0 = Ψ1 = D, Ψ4 = Ψ7 = {D − {D1}, D − {D2}}. Note
that the set of all T-consistent set is a cover forD, and that
Ψ0 = D in any sTFPG.

In temporal causal systems, sensor signals are received se-
quentially. In this case, the setΨt can be computed efficiently
by maintaining a list of T-consistent sets, and updating this
list when a new sensor signal is received or a time-out event
is generated automatically indicating a missing sensor signal
(according to the current list of T-consistent sets).

The set of T-consistent sets can be iteratively updated as
follows. Letd be the discrepancy corresponding to a new sen-
sor signal, and letTC(d) be the current set of all T-consistent
sets that containsd. Then for anyD′ ∈ TC(d), if the new

observed state ofd is consistent withD thend remains in
D′. Otherwise,d must be inconsistent with one or more of
its adjacent nodes. In this case the setD is split, such that
the conflicting nodes are separated. New T-consistent sets are
generated by removing conflicting nodes.

3.2 Hypothetical states
An hypothetical statedefines node states and the interval at
which each node changes its state. In contrast to the ob-
served state, a hypothetical state is defined for all the sTFPG
nodes. Formally a hypothetical state is a mapHt : V →
{ON, OFF}×R×R. Similar to actual states, hypothetical states
are defined for both discrepancies and failure modes. We will
write H(v).terl to indicate the estimated earliest time of state
change andH(v).tlat to indicate the estimated latest time.
Similar to actual and observed states, a nodev with OFFstate
has activation time of exactly0, that isH(v).state = OFF
impliesH(v).terl = H(v).tlat = 0.

Hypothetical states are an estimation of the current state
of all nodes in the system and the time period at which this
node changed its states. An estimation of the current state,
however, must be consistent with the sTFPG model to be use-
ful. Similar to observed states, the consistency of hypothet-
ical states depends on the underlying sTFPG model and the
current time. Formally, we say the hypothetical stateHt is
consistentif for any noded the following conditions hold:

1. Ht(d) = OFFand for all(v, d) ∈ E:

(a) Ht(v) = OFF, or
(b) Ht(v) = ON∧ t < Ht(v).tlat + (v, d).tmax

2. Ht(d) = ONand all the following hold:

(a) Ht(d).terl ≥ minv∈Ud
{Ht(v).terl+(v, d).tmin},

(b) Ht(d).tlat ≤ minv∈Ud
{Ht(v).tlat+(v, d).tmax}

Ud = {v ∈ V |(v, d) ∈ E andHt(v).state = ON}
The above simply says thatH is consistent if every node state
is consistent with the state of its predecessors. Namely, the
state of a noded can beOFFat timet if there is a possibility
that a failure did not propagate and reachd at timet from any
of its predecessors. Also, the state of a noded can beONat
time t if there is a possibility that a failure have reachedd at
or beforet from any of its predecessors. A consistent hypo-
thetical state will be referred to as ahypothesis. In general,
there are infinitely many consistent hypothesis at any timet.

A consistent hypothetical state is generated from an initial
state assignment to a subset of the system nodes. Formally,
let V ′ ⊂ V be a set of nodes. A partial hypothetical state
assignment at timet is a mapPHt : V ′ → {ON, OFF}×R×R.
The mapPHt is said to be consistent forV ′ if the PH is
consistent with respect to the subgraph of the sTFPG model
restricted to theV ′ nodes. In this case it is referred to as
a partial hypothesis. A hypothesis defined overV may be
referred to as a complete hypothesis.

For an initial state assignmentPHt, anextensiontoPHt is
a (complete) hypothesisHt satisfyingHt|V ′ = PHt, where
Ht|V ′ is the restriction of the mapHt to the subsetV ′. We
say thatPHt is avalid state assignmentif there exists at least
one extension forPHt. Given thatPHt is a valid state as-
signment forV ′ ⊆ V one can construct an extensionH by



assigning state values to the remaining nodes,V −V ′ by prop-
agating the current state assignment backward and forward to
adjacent states. The procedure for hypothesis generation will
be explained later in more detail.

We define a state equivalence relation of hypothesis as fol-
lows. LetH andH ′ be two hypothetical states at timet. We
say thatH andH ′ are state equivalent if

(∀v ∈ V ) H(v).state = H ′(v).state

The state equivalence relationship is denoted≡s. It is easy
to see that the equivalence kernel of this relationship is finite.
Namely, the set of all state-equivalent hypothesis sets is finite
In fact, the equivalence kernel of≡s is isomorphic to the set
of all binary assignments toV .

We now define an order relation on state equivalent hy-
potheses (equivalence classes of≡s). Let H andH ′ be two
hypothetical states at timet. Then we say thatH ′ is contained
in H, written asH ′ ≺ H if:

(∀v ∈ V ) [H ′(v).terl, H ′(v).tlat] ⊂ [H(v).terl,H(v).tlat]

We extend this relation to the partial order¹ in the usual way
(by including the identity relation restricted to the underlying
equivalence class). Clearly,H ′ ¹ H impliesH ′ ≡s H. A
hypothesisH is said tomaximalif there is no other hypothesis
H ′ such thatH ≺ H ′. In other words, any hypothetical state
H ′ satisfyingH ≺ H ′ is not consistent.

Proposition 1 For any hypothesisH there exists a unique
maximal hypothesisH∗ such thatH ¹ H∗. 2

The proof of the above proposition is direct based on the
definition of consistent hypothetical states. The maximal hy-
pothesis containingH can be computed by iteratively extend-
ing the state change period for each node while maintaining
consistency between the states.

Let PHt be a valid state assignment, and letHt be a hy-
pothesis. We say thatHt is maximal forPHt if Ht is an ex-
tension forPHt and for any other extensionH ′

t that is state-
equivalent toHt we haveH ′

t ≺ Ht.

3.3 The diagnosis set
As mentioned earlier, the task of the diagnosis process is to
provide a set of consistent state estimation (hypotheses) that
closely matches the observed state of the system. We say that
a hypothesisHt strongly matches a discrepancyd if

• Ht(d).state = St(d).state, and

• Ht(d).terl = Ht(d).tlat = St(d).time

The set of all discrepancies that are strongly matched with a
hypothesisH is denotedSM(Ht). A hypothesisHt weakly
matches a discrepancyd if:

• Ht(d).state = St(d).state, and

• Ht(d).terl ≤ St(d).time ≤ Ht(d).tlat

or

• Ht(d).state = ON∧ St(d).state = OFF, and

• t ≤ Ht(d).tlat

or

• Ht(d).state = OFF ∧ St(d).state = ON, and

• Ht(d).terl ≤ t < Ht(d).tlat

The set of all discrepancies that are weakly matched with a
hypothesisH is denotedWM(Ht). Clearly, for any hypoth-
esisHt we haveSM(Ht) ⊆ WM(Ht). The rank,R(Ht)
of hypothesisHt is defined as the size of its weakly matched
setWM(Ht). Clearly, for a sTFPG withN discrepancies we
haveR(Ht) ≤ N .

A maximal hypothesis with the highest rank at timet is re-
ferred as adiagnosis. We will write Rt to denote the highest
rank at timet. Thediagnosis setat timet as the set of maxi-
mal hypothesis with rankRt. Thediagnosis problemcan then
be stated as follows:

Given a set of sensor signals at timet, compute the
diagnosis set (hypotheses with maximal ranks) cor-
responding to the underlying observed state.

Assuming a set of uncorrelated sensors that are more likely
not to fail (failure rate is less than50%), it is easy to see that
the diagnosis set defined above is the most likely estimation
of the actual state of the system nodes based on the observed
state.

4 The Diagnosis Reasoning Algorithm
The aim of the diagnosis reasoning process is to find a consis-
tent and plausible explanation (in the form of a hypothetical
state) of the current system state based on sensor measure-
ments (observed state). Typically, the system starts with no
sensor signals (all discrepancies are in theOFFstate). When
a failure occur, sensor signals are generated and received se-
quentially by the diagnosis reasoner, which in turn reacts
by generating the corresponding hypotheses, from which the
state of failure modes can be identified.

4.1 Hypothesis generation
A hypothesis must be generated from an initial state assign-
ment for at least one of the system nodes. As discussed ear-
lier, such state assignments must be valid. By definition, a
valid initial state assignment is consistent within its domain
of nodes and can be extended to a hypothesis. However, apart
from the consistency assumption, such definition of validity
is not constructive, namely, one cannot test or generate a valid
state assignment from this definition.

One way to ensure validity of a consistent hypothetical
state assignmentPH : V ′ → {ON, OFF}×R×R is to restrict
the elements of the setV ′ such that they do not have common
ancestors fromV − V ′, that is, they are causally independent
with respect to the remaining nodes. Formally, a subsetV ′ of
V is causally independentif for all v ∈ V ′:

1. (∃v′ ∈ V ′) (v′, v) ∈ E, or

2. (∀v′ ∈ V ′)(∀v′′ ∈ V − V ′) ¬({v, v′} ⊆ Reach(v′′))

whereReach(v′′) is the set of all nodes reachable fromv′′
in the sTFPG graph. Intuitively,V ′ is causally independent
if the state of each node inV ′ can be either explained by
the state of another node inV ′ or does not share a common
ancestor from outsideV ′ with another node inV ′.



Let PH be a consistent state assignment for a causally in-
dependent setV ′ ⊆ V . We define the backward extension
operation,BProp, on the setV ′, the assignment mapPH,
and a nodev ∈ V − V ′ where(v, v′) ∈ E for somev′ ∈ V ′
such thatv′ does not have a predecessor inV ′. The outcome
of this operation is a new state assignment mapPH ′ for the
setV ′ ∪ {v}, wherePH ′|V ′ = PH andPH ′(v) is assigned
as follows:

• If PH(v′).state = OFF:

– PH ′(v).state = OFF, PH ′(v).terl =
PH ′(v).tlat = 0

• If PH(v′).state = ON:

– PH ′(v).state = ON,
– PH ′(v).terl = PH(v′).terl− (v, v′).tmax,
– PH ′(v).tlat = PH(v′).tlat− (v, v′).tmin

It is easy to verify that the state assignmentPH ′ is consistent
for V ′ ∪ {v} given thatPH is consistent forV ′. In addition
we have the following result.

Proposition 2 In the BProp operation described above, the
setV ′ ∪{v} is causally independent and the state assignment
PH ′ is maximal with respect toPH.

Proof (Outline): Assume thatV ′′ = V ′ ∪ {v} is not causally
independent, then there must exist two nodesd, d′ that do not
have a predecessor inV ′′ and share a common ancestor from
V − V ′′. Clearly one of these nodes must bev. However, if
v shares a common ancestor with a noded ∈ V ′ thenv′ must
also share the same ancestor withd contradicting the assump-
tion thatV ′ is causally independent. The proof of maximality
is direct from the definition of consistent hypothesis. 2

A direct consequence of the above result is that, iterative
applications of theBProp operation on a consistent hypo-
thetical assignmentPH over a causally independent set will
result in a maximal consistent hypothetical state assignment
for PH, over a larger causally independent set. Also, clearly
that iterative application ofBProp will terminate at certain
point at which each node in the underlying set has either a
predecessor from inside the set or no predecessor at all in the
sTPFG model (a failure mode in this case).

Let V ′ be a causally independent set of nodes andPH be
a consistent state assignment forV ′. We define the forward
extension operation,FProp, on the setV ′, the assignment
mapPH, and a nodev ∈ V − V ′ where(v′, v) ∈ E for
somev′ ∈ V ′ and in addition:

(∀v′′ ∈ V −V ′) (v′′, v) ∈ E → (∀d ∈ V ′)v′′ 6∈ Reach(d)

From the above, the external nodev should have a predeces-
sor inV ′. In addition, any other predecessor ofv that is not in
V ′ should not be reachable from a node inV ′. These condi-
tions onv are required to ensure correct causal propagation.
The outcome of theFProp operation is a new state assign-
ment mapPH ′ for the setV ′ ∪ {v}, wherePH ′|V ′ = PH
and andPH ′(v) is assigned as follows:

• If (∀v′ ∈ V ′) (v′, v) ∈ E → PH(v′).state = OFF:

– PH ′(v).state = OFF, PH ′(v).terl =
PH ′(v).tlat = 0

• Else:

– PH ′(v).state = ON,
– PH ′(v).terl = minv′∈Uv

{PH(v′).terl +
(v, v′).tmin},

– PH ′(v).tlat = minv′∈Uv{PH(v′).tlat +
(v, v′).tmax}

Uv = {v′ ∈ V ′|(v′, v) ∈ E andPH(v′).state = ON}
It is easy to verify that the state assignmentPH ′ is consistent
for V ′∪{v} given thatPH is consistent forV ′. Similar to the
case of backward propagation we have the following result.

Proposition 3 In the FProp operation described above, the
setV ′ ∪{v} is causally independent and the state assignment
PH ′ is maximal with respect toPH.

Proof (Outline): V ′′ only adds a node that has a predecessor
in V ′ so it inherits the consistency ofV ′. The maximality of
PH ′ is direct from the definition of consistency. 2

Similar to the case of backward propagation, the above re-
sult shows that iterative applications of theFProp operation
on a consistent hypothetical assignmentPH over a causally
independent set will result in a maximal consistent hypotheti-
cal state assignment forPH, over a causally independent set.
Also, it is easy to see that the iterative application ofFProp
will terminate after finite number of steps at which all the
decedents ofV ′ are assigned a state value.

Based on the above operations we can now define a proce-
dure to generate a hypothesis from an initial state assignment,
we will refer to such procedure asHypothesis. The opera-
tion Hypothesis accepts as an input a hypothetical state as-
signmentPH over a causally independent setV ′ ⊆ V and
returns a hypothetical stateHt. The procedureHypothesis
is defined in the following algorithm.

The Hypothesis procedure described in Algorithm 1 is not
deterministic, as it will generate differentH depending on the
selection fromPSet. However, it is easy to see that this al-
gorithm will terminate after a finite number of steps. Clearly,
the generatedH is complete, namely defined for allv ∈ V .
Moreover we have the following result.

Proposition 4 Let V ′ ⊆ V be a causally independent set
andPH be consistent hypothetical assignment forV . Then
any hypothetical stateH output fromHypothesis(V ′, PH)
is consistent and maximal with respect toPH.

Proof (Outline): We already shown that recursive application
of theBProp andFProp operators generate a maximal con-
sistent set with respect to the initial state assignmentPH. Let
V ′′ = Vc andPH ′′ = H just after the termination of the re-
cursiveBProp andFProp operations. It is easy to see that
V ′′ does not contain any descendants fromV − V ′′. In ad-
dition, given thatPH ′′ is maximally consistent, every node
in V ′′ is either explained by another node inV ′′ or is a root
node (failure mode) in the sTFPG mode. Therefore, assign-
ing anOFFstate to all the nodes inV − V ′′ will preserve the
consistency and maximality of the state assignment. 2

The above results simply says that a consistent state assign-
ment over a causally independent set is a valid state assign-
ment, as it can always be extended to a (complete) hypothesis.
It is important to note that the number of choices available in



Algorithm 1 TheHypothesis procedure

input : V ′ ⊆ V andPHt : V ′ → {ON, OFF} × R× R
Vc = V ′
H = PHt

defineIn(X) := {v ∈ X|(∀v′ ∈ X) (v, v′) 6∈ E}
definePSet(X) := {v ∈ V −X|(∃v′ ∈ In(X)) (v, v′) ∈
E}
while PSet(Vc) 6= ∅ do

selectv from PSet(Vc)
H = BProp(H,Vc, v)
Vc = Vc ∪ {v}

end while
defineODC(X) := ∪v∈XReach(v)−X
defineTSet(X) := {v ∈ V −X|ODC(X)× v∩E = ∅}
defineCSet(X) := {v ∈ TSet(X)|(∃v′ ∈ X) (v′, v) ∈
E}
while CSet(Vc) 6= ∅ do

selectv from CSet(Vc)
H = FProp(H, Vc, v)
Vc = Vc ∪ {v}

end while
for all v ∈ V − Vc do

H(v).state = OFF
H(v).terl = H(v).terl = 0

end for
return H

the above Hypothesis procedure is finite and therefore, the
number of all different hypotheses that can be generated for a
givenV ′, PH is finite.

4.2 Hypothetical state initialization
The previous section shows that it is possible to generate a
hypothesis from a consistent state assignment over a set of
causally independent nodes. To generate a diagnosis, the un-
derlying hypothesis must to be of the highest possible rank,
namely, maximally matching with the current observed state.
Clearly the rank of the hypothesis is dependent on the initial
state assignment.

Intuitively, a valid initial set that matches the current ob-
served state is favorable, as such a set can lead to a high
ranking hypothesis. The support setΨt discussed earlier pro-
vides a collection of maximal consistent discrepancy states.
The problem, however, is that the underlying sets may not be
causally independent and, therefore, there is no guarantee that
they can be extended to a consistent hypothetical state.

To generate a valid initial state assignment we need to add
the condition of causal independence to the timing consis-
tency requirement for the state assignment. To this end, a set
D′ ⊆ D is said to be strongly T-consistent, or ST-consistent
for short, ifD′ is both T-consistent and causally independent.

We define theconsistency indexat timet, denoted,µt to be
the size of the largest possible ST-consistent set. Theevidence
setat timet, is the set of all ST-consistent sets with sizeµt.
This set will be denotedΩt. Similar to the the setΨt, the set
Ωt can be computed incrementally by maintaining a list of all
ST-consistent sets, and updating this set when a new sensor
signal is received.

Based on the above definitions we can have the following
result for the maximum hypothesis rank,Rt, at timet. Recall,
thatλt refers to the size of the maximal T-consistent set.

Proposition 5
µt ≤ Rt ≤ λt

Proof (Outline): For the lower bound, consider an initial
state assignment that strongly matches a maximal set of ST-
consistent discrepanciesω ∈ Ωt. By definition this assign-
ment is a valid one and, therefore, can be extended to a com-
plete hypothesis,H, which preserves the state of the initial
assignment. The rank ofH must be greater or equal toµt in
this case. AsH will be strongly matching with the setω.
For the upper bound assume there exists a hypothesis with a
rankr > λt. This means that it can match the state ofr dis-
crepancies. It can be shown from the definition of hypothesis
consistency and T-consistent set that such set of discrepancies
must be T-consistent. This contradicts thatλt is the largest
size of T-consistent sets at the current timet. 2

The above result have several important consequences.
The first is that, the best possible initial state assignment
should be a one that exactly matches the observed states of
any discrepancy set inΩt. Another important implication is
that if µt = λt then the optimal diagnosis can be obtained
directly applying theHypothesis operation to each set inΩt.
Note that the value ofλt andµt are time dependent and they
reflect the existence of faulty sensors (as they introduce in-
consistency between observed states).

4.3 Generating the diagnosis set
Initially, at the start,t = 0, we haveRo = N (N is the num-
ber of discrepancies in the model.) Given that consistency be-
tween nodes can only be invalidated with new sensor signals,
the maximum rankRt is a monotonically decreasing function
of time. Clearly, if there is no sensor failure (more precisely,
inconsistency between observed discrepancy states),Rt will
remain at its maximum valueN . The following result shows
that it is possible to compute the optimal hypothesis for any
sTFPG model with a given observed state.

Proposition 6 For a given sTFPG and observed stateSt the
problem of finding the diagnosis set at timet is decidable.

Proof (Outline): We show early that the setΩt is finite and
the number of hypotheses generated for each state assignment
is also finite. Therefore, the optimal set of hypotheses can be
obtained by running the procedureHypothesis finite number
of times for each element inΩt. 2

Because of the complex nature of the consistency condi-
tions, there does not seem to be a direct way to generate an
optimal diagnosis starting from an initial assignment from the
setΩt. However, it is possible to reduce the search for optimal
hypothesis by eliminating those paths that could not improve
the current maximal ranking.

At the occurrence of every event (sensor signal or time-
out) a failure report is generated from the set of optimal hy-
potheses. This report consists of the set of all consistent state
assignments that maximally matches the current set of ob-
servation. In this report, any observed state that does not
(weakly) match the current hypothesis is considered faulty.



Faulty alarms with observedONstate are considered false
alarms, while those withOFF state are considered missing
alarms.

5 Conclusion
In this paper we introduced an consistency-based approach
for robust diagnosis of temporal causal systems based on the
simple timed failure propagation graph model. The model
can be used for diagnosis a general class of systems with
temporal propagation constraints. We presented the main el-
ements of the diagnostic problem and formally described the
main parts of the optimal diagnosis reasoning algorithm.

In future work, we plan to extend the result to the more
general hybrid failure propagation graph model that al-
lows dependency loops, AND-type discrepancies, and mode
switching.
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