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Abstract. This paper presents an approach for robust diag-
nosis of a general class of dynamic systems based on a tempo-
ral failure propagation model. The proposed approach can be
applied to a general class of systems with both time and event
driven dynamics such as hybrid and discrete event systems.
The paper presents the syntax and semantics of the proposed
model and introduces the diagnosis approach.

1 Introduction

Diagnostic algorithms detect, isolate and estimate system fail-
ures using observed signals and measurements from the sys-
tem sensors and actuators, and comparing them against a
model that captures nominal and/or faulty behavior. The ob-
served behavior is explained by a set of hypotheses that cap-
ture parameterized changes in the system components.

Two kinds of modeling paradigms have been commonly
used to describe the behavior of engineering systems: analyti-
cal models and associative models. Analytical models such as
differential equations, state machines, and hybrid automata
are used to describe the nominal (correct) system behavior.
The analytical approach, depends on the availability of an
accurate mathematical model, which may be complex and
difficult to obtain for practical real-life systems.

Associative models such as fault trees, cause-consequence
diagrams, diagnosis dictionaries, and expert systems describe
system behavior when faults are present [2, 7, 8, 1, 9]. The un-
derlying fault models usually describe qualitatively the causal
relationship between observed signals and failure sources. As-
sociative modeling and diagnosis techniques are more common
in practice due its simplicity and computational efficiency.

In this paper, we present a qualitative approach to fail-
ure diagnosis based on a temporal fault model referred to as
hybrid failure propagation graph (HFPG). HFPG is an exten-
sion of the timed failure propagation graphs (TFPG) [4, 5].
The TFPG model is closely related to the fault model pre-
sented in [6, 3] and used for an integrated fault diagnoses and
process control system. The HFPG model adds mode depen-
dency constraints on the propagation links which can then
be used to handle failure scenarios in hybrid and switching
systems. This paper presents the formal description of the
diagnosis problem and the main elements of the diagnostic
system based on hybrid failure propagation graph models.
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2 Hybrid Failure Propagation Graphs

The hybrid failure propagation graph (HFPG) model is a la-
beled directed graph where the nodes represent either failure
modes - which are fault causes - or discrepancies - which are
off-nominal conditions that are the effects of failure modes.
A discrepancy can either be monitored (attached to alarms)
or non-monitored, and depending on the way it is triggered
by the incoming signals it is further classified as either AND

or OR discrepancy. Edges between nodes in the graph capture
propagation of failure effects over time in the dynamics sys-
tem. To accommodate mode-switching in systems, edges in
the HFPG model can be activated/deactivated based on the
current operating mode of the system.

2.1 Syntax

A hybrid failure propagation graph model is represented as a
tuple G = (F, D, E, M, ET, EM, DC, DS), where:

• F is a nonempty set of failure nodes
• D is a nonempty set of discrepancy nodes, with F ∩D = ∅
• E ⊆ V × V is a set of edges, where V = F ∪D
• M is a nonempty set of system modes. We assume that at

each time instance t the system can be in only one mode
• ET : E → Int where Int denotes finite time intervals
• EM : E → P(M), where EM(e) 6= ∅ for any edge e ∈ E
• DC : D → {AND, OR}, defines the type of each discrepancy
• DS : D → {True, False} is a map defining the monitor-

ing status of the discrepancy as either ON for discrepancies
attached to monitored alarms or OFF otherwise

Some of the discrepancies are monitored as defined by the
map DS. The set of monitored discrepancies will be denoted
Da. An edge e = (v, v′) ∈ E if and only if a state change
of v can propagate and participate in changing the state of
v′. The map ET associates each edge e ∈ E with the mini-
mum and maximum time for the failure to propagate along
the edge. We will write tmin(e) and tmax(e) for the minimum
and maximum time for failure propagation along the edge e,
respectively, so that ET(e) = [tmin(e), tmax(e)]. That is, given
that a propagation edge is enabled (active), it will take at least
(at most) tmin (tmax) time for the fault to propagate from the
source node to the destination node. The map EM associates
each edge e ∈ E with a subset of the system modes at which
the failure can propagate along the edge. Consequently, the
propagation link e is enabled (active) in a mode m ∈ M if and
only if m ∈ EM(e). The map DC defines the type of a given



discrepancy as either AND or OR. An OR type discrepancy node
will be activated when the failure propagate to the node form
any of its parents. On the other hand, an AND discrepancy
node can only be activated if the failure propagates to the
node from all its parents. We assume that HFPG models do
not contain self loops and that failure modes cannot be a des-
tination of any edge. Also every discrepancy must be caused
by another discrepancy or a failure mode.
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Figure 1. A hybrid failure propagation graph

Figure 1 shows an example of an HFPG model. In this fig-
ure, rectangles represent the failure modes while circles and
squares represent OR and AND type discrepancies, respectively.
Monitored discrepancies appears as bold circles or rectangles.
Edges between nodes captures failure propagation in the sys-
tem. Propagation through edges are parameterized by an in-
terval, [tmin, tmax], and the set of modes in which the edge is
active. Sequence of alarms are identified by shaded discrepan-
cies. The time at which the alarm is observed is shown above
the corresponding discrepancy.

2.2 Semantics

Failure propagation between nodes depends primarily on: (i)
the current mode of the system and the states of the observed
discrepancies, and (ii) the past history of the system. Since
we are dealing with hybrid systems, the past history includes
both the monitored alarm status and the sequence of mode
changes that occur in the system. Mode changes can activate
and deactivate edges, therefore, to maintain the consistency
in the reasoning process, one has to explicitly link the time
of occurrence and the status of discrepancies with the time of
mode changes. In this section, the semantics of failure prop-
agation in HFPG models is defined based on the concept of
system events and states.

System events

There are two types of system events: a state change event
and a mode change event. System events are represented as
a tuple v = (x, t), where x ∈ D ∪ F ∪ M and t is the time
at which the signal is observed. We will write Signal(v) to
identify the source of the event, and T(v) to identify the time
at which the event occurs. Therefore, v = (Signal(v), T(v)).
An event v is triggered whenever a node state is changed or
the system switches to a new mode. We write vk to identify the
kth event. An event v is an external event if Signal(v) ∈ F ∪M
otherwise it is an internal event. Clearly, external events are
generated by the system environment and are unpredictable

while internal events are consequences of external events. We
will write I to denote the index set for the system events.

System states

A system state corresponds to the current state of all nodes
and edges in the HFPG model. Formally, a state is a map
State : I → {ON, OFF}N+M , where N is the number of nodes
and M is the number of edges in the HFPG model. There-
fore, State(k) or simply Statek denotes the state of the system
immediately after the occurrence of the kth event vk. We will
also write Statet where t ∈ R to denote the state at time t.
From the definition, State(k) is a binary vector that defines
the state of to each node and edge in the HFPG model at
time k. For a node, a state ON indicates that the failure effect
reached this node, otherwise it is set to OFF. For an edge, a
state of ON indicates that the edge is currently active, other-
wise it is set to OFF. For z ∈ F ∪D∪E we will write Statek(z)
to indicate the state of z immediately after event vk.

In the HFPG model, changes in the current node states de-
pends on the last activation time of propagation edges. The
map ETime : E → R where ETime(e) defines the time of the
last state change of e. The map ETime is time dependent and
therefore we may write ETimek to denote the map immedi-
ately after the event vk.

System dynamics

The system starts with an initial state, Stateo in which all
system nodes are initially OFF, and the initial mode defines
the set of active edges. External events drive state changes
for failure modes and propagation links. Such changes can
happen at any time instant. The state change is defined by
the incoming event, namely for all i ∈ I

• Signal(vi) ∈ F ⇐⇒ Statei(Signal(vi)) = ON ∧
Statei−1(Signal(vi)) = OFF

• Signal(vi) ∈ M =⇒ (∀e ∈ E) Statei(e) = ON⇔ Signal(vi) ∈
EM(e)

That is, a failure mode event will change the state of a failure
mode node to ON. Also, under the assumption of persistent
failure, such signal can only be generated if the previous state
of the failure mode is OFF.

Internal events are direct consequences of external events,
particulary failure modes. The state changing event vi = (d, t)
where i ∈ I, d ∈ D and DC(d) = OR can occur only if all of
the following holds,

• Statei−1(d) = OFF ∧ Statei(r, d) = ON,
• (∃(r, d) ∈ E)(∃j < i) such that Statej(r) = ON and,

tmin(r, d) ≤ T(i)−max(ETime(r, d)), T(j)) ≤ tmax(r, d)

That is a change of state of a discrepancy node d of type OR can
only occur if a parent node r is currently ON and the edge (r, d)
has been active long enough to allow the propagation of failure
from r to d. Such change of state should occur definitely at
the maximum time defined by the propagation link. Formally,
vi = (d, t) where i ∈ I, d ∈ D and DC(d) = OR should occur if
there exists a parent of d, say r, and a time index j ≤ i such
that

Statej(r) = ON ∧ Statet(r, d) = ON ∧
t−max(ETime(r, d)), T(j)) = tmax(r, d)



In case of AND type discrepancy, d, all the parents of d need to
be active before the activation of d becomes active. However,
not all the failure effect need to reach d at the same time. We
assume that once a failure effect from a parent reach the AND

node it will remain in effect even if the connection between
the two node is deactivated latter. Condition for the activa-
tion of AND type node can be formalized similar to the above
conditions for OR type nodes.

During operation, the system is triggered by a sequence of
events and state changes. Such sequence forms what is called
an execution trajectory. The set of all possible execution tra-
jectories defines the HFPG behavioral semantics.

3 The Diagnosis Problem

The HFPG diagnoser is a reactive module that is triggered
by signals from the system sensors. The diagnoser generates
a set of logically consistent hypotheses for the current state
of the system, based on the observed sequence of alarms. The
hypotheses are then ranked based on the number of support-
ing alarms versus the number of inconsistent ones. The set of
hypotheses with the highest rank is then selected as the most
plausible estimations of the current state of the system.

3.1 Failure Mode Hypotheses

A failure mode hypothesis is an evaluation of the status
of a failure mode in the HFPG model together with the
corresponding evidences. Formally, a hypothesis is a tuple
hf = (f, te, tl, r, SP, SS, IN, MI, PN), where f ∈ F is the
failure mode for which the hypothesis stands, te and tl are
the estimated earliest and latest time of occurrence of the
failure mode f . The static rank, r, of the hypothesis is num-
ber associated with a measure of belief in the hypothesis. The
rank is set to 0 at the creation of the hypothesis and updated
each time a new event is triggered. The elements SP , SS, CS,
IN , MI, and PN are sets of discrepancies defined as follows:

• SP ⊆ Da is the set of primary signalling discrepancies
that support the hypothesis hf . Alarms in SP are either
triggered as an immediate consequence of f , or can only be
explained based on the occurrence of f alone.

• SS ⊆ Da is the set of secondary signalling discrepancies
that support the hypothesis hf . Alarms in SS are trig-
gered as a consequence of alarms already explained as a
consequence of f and are supporting the hypothesis hf .

• CS ⊆ Da is the set of secondary signalling discrepancies
that support the hypothesis h given that other hypothesis
are valid. Alarms in CS are either a consequence of a set
of failure modes F ′ ⊆ F where f ∈ F ′ or a consequence of
alarms already explained as a consequence of F ′.

• IN ⊆ Da is the set of signalling monitored discrepancies
that are inconsistent with the hypothesis hf . These alarms
are connected to f but cannot be explained based on hf .

• MI ⊆ Da is the set of silent monitored discrepancies that
are inconsistent with the hypothesis hf . These inactive
alarms are connected to the f but should be singling ac-
cording to the hypothesis hf .

• PN ⊆ Da is a set of pending discrepancies whose status
cannot be identified at the current time. Pending discrep-
ancies are silent monitored discrepancies that are expected
to signal in the future according to the hypothesis hf .

In addition to generating and updating hypotheses, the di-
agnoser also generates a list of false alarms, namely those
alarms that could not be explained by any logically valid hy-
pothesis. Note that each hypothesis hf considers only those
discrepancies that are reachable from the underlying failure
mode f . This allows the diagnoser system to deal with the
sensors signals more efficiently by focusing on the nodes that
are connected to the corresponding discrepancy.

3.2 Observable events

Observable events trigger the HFPG diagnoser to update the
current set of hypotheses. There are two types of observable
events; physical and hypothetical events. Physical events cor-
respond to observed signals from the system sensors, while
hypothetical events correspond to confirmed state inconsis-
tencies according to a given hypothesis. Physical events can
be either a signalling alarm or a mode switching event. We
assume here that mode change observations are accurate. On
the other hand, a sensor may fail and therefore the underlying
event may not correspond to actual system event.

A physical event is represented by the tuple v = (x, t),
where x ∈ Da ∪ M is either a monitored alarm (x ∈ Da)
or a mode-switching signal (x ∈ M) and t is the time at
which the signal is observed. The event can be written also as
v = (Signal(v), T(v)). The diagnostic system keeps a record of
the sequence of all timed events from the system initial start
to the current time. We will also write vk to identify the kth
physical event.

Hypothetical events are referred to as time-out events. For
a given hypothesis hf , a time-out event will be issued at time
t if a monitored discrepancy da was expected to signal by the
time t according to hf but it did not signal.

3.3 Physical and Hypothetical States

Based on the way the state of a given node is evaluated we
distinguish here between two types of state estimations used
to define the failure status of the system: physical states and
hypothetical states. A physical state corresponds to the ob-
served state of a monitored discrepancy, while a hypothetical
state is the estimated state of a node in the HFPG model ac-
cording to a given hypothesis. The relationship between these
two types of states defines the overall consistency relationship
between alarms and hypothesis.

Physical states are only be defined for monitored discrep-
ancies. The physical state of a monitored discrepancy can be
either active or inactive. The map PState : Da → {ON, OFF},
assigns to each monitored alarm d ∈ Da its current measured
states which can be ON if the alarm is active, otherwise it is
OFF. We define another map PTime : Da → R where PTime(d)
is the time of the last change in the physical state of d ∈ Da.
These two maps are time dependent and, therefore, we may
write PStatek and PTimek to denote the maps after the kth
event, vk. Initially, the physical states of all alarms are set to
OFF and the corresponding times are set to zero.

A hypothetical state, on the other hand, is the state of
an HFPG node according to a given hypothesis. This state
type can be defined for any node in the HFPG model. Given
a set of hypotheses H, the hypothetical state of a node
with respect to a hypothesis hf ∈ H is given as a map



HStatehf : V → {ON, OFF, UDF}, where UDF denotes undefined
values. The map HStatehf assigns to each node v ∈ V its
state according to hf . The map HStatehf is only defined for
the set of nodes that can be reached from the failure mode f
at any system mode including the node f . The hypothetical
state of a node reachable from f can be ON if the node should
be active according to the hypothesis hf , otherwise it is OFF.

The map HTimehf : V → Int ∪ {UDF} assigns to each
node in V the time interval in which the node must have
been activated within according to the hypothesis hf . Simi-
lar to HStatehf , the map HTimehf is only defined for nodes
that are reachable from f . For silent discrepancies the map
HTimehf (d) shows the time interval at which the discrepancy
d should be active according to hf .

In general, a hypothetical state may be dependant on more
than one hypothesis. Such situation is attributed to the fact
that the state of an AND-type discrepancy depends on the com-
bined states of all its parent nodes. Such dependency is mod-
eled using the map DSethf : V → P(H) which assigns to
each node v ∈ V the set of hypothesis that the hypothet-
ical state HStatehf (v) depends on. That is, the evaluation
HStatehf (v) is valid only in conjunction with the validity of
the set DSethf (v).

4 The Diagnostic Reasoner

The diagnoser updates the set of most plausible valid hy-
potheses based on the causal and timing consistency between
the discrepancies. Consistency between discrepancy nodes de-
pends on their types and the current mode of the system.

4.1 Causality Relationship

Causality is a relation between the states of the nodes in the
HFPG mode. There are two types of causalities depending on
the type of the node: AND and OR. Causality relationship is
time dependent and therefore will be scripted by the current
event index. The OR-causality at the kth event is denoted
as OCk. OR-causality is a relationship between the state of
an OR discrepancy and the hypothetical state of one of its
parent nodes, while AND-causality is a relationship between
the state of an AND node and the states of all its parents.

Causality is independent on the state type of the node,
therefore, we it can be defined for a general state. We will
write State(v), Tmin(v), Tmax(v) to denote the current state
of the node and the limits of the time interval at which this
state was last changed, respectively. In case of physical state,
we have Tmin(v) = Tmax(v) = PTime(v). Let v′, v ∈ V
be two nodes in the HFPG model such that, DC(v) = OR

and (v′, v) ∈ E. Assume that at time index k, v′ hold a
state Statek(v′) and that v changed its state to a new state
Statek(v) such that Tmin(v) ≤ Time(k) ≤ Tmax(v). Then
(Statek(v′), Statek(v)) ∈ OCk if all the following hold.

• Statek(v′) = Statek(v) = EStatek((v′, v)) = ON,
• tmin(v′, v) ≤ (

Tmin(v)−max
(
Tmax(v′), ETime((v′, v))

))
,

• tmax(v′, v) ≥ (
Tmax(v)−max

(
Tmin(v′), ETime((v′, v))

))

The above simply says that Statek(v′) (possibly) caused the
current change of the Statek(v) to ON if v′ is also ON and the
link between v′ and v is currently enabled and the time it
takes for the fault to propagate for v′ to v is consistent with

the timing attributes of the underlying propagation link as
well as the time at which this link is enabled. OR-causality is
illustrated in Figure 2.

tmax(v′, v)

tmin(v′, v)

ETime(v′, v)

Tmax(v)Tmin(v)Tmax(v′)Tmin(v′)

v′ v

time

Figure 2. OR-Causality relationship

AND-causality can be defined similarly. Let v ∈ V be
a node in the HFPG model such that DC(v) = AND. As-
sume that at time index k each parent of v, v′ hold a
state Statek(v′) and that v changed its state to a new state
Statek(v) such that Tmin(v) ≤ Time(k) ≤ Tmax(v). Write
Statek(V ′) to denote the conjunction of the individual states
of each v′ ∈ V . That is, Statek(V ′) = {Statek(v′) | v′ ∈ V ′}.
Then (Statek(V ′), Statek(v)) ∈ ACk if all the following hold

• Statek(v) = ON,
• (∀v′ ∈ V ′) Statek(v′) = ON,

tmin(v′, v) ≤ (
Tmin(v)−max

(
Tmax(v′), ETime(v′, v)

))
,

• (∃v′ ∈ V ′) EStatek((v′, v)) = ON,
tmax(v′, v) ≥ (

Tmax(v)−max
(
Tmin(v′), ETime(v′, v)

))

That is, the Statek(V ′) (possibly) caused the current change
of the Statek(v) to ON if state of every v′ ∈ V ′ is also ON and the
link between every v′ and v is currently enabled and the time
it takes for the fault to propagate for v′ to v is consistent with
the timing attributes of the propagation link. AND-causality
is illustrated in Figure 3.
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Figure 3. AND-Causality relationship

Note that the conditions for AND-causality require that the
minimum time it takes for the fault to propagate from any
parent node v′ ∈ V ′ to the node v is greater than the mini-
mum propagation time of the corresponding link. Intuitively,
this condition ensures that the node v′ will not be activated
until it receives all the failure effects from its parents.



4.2 Temporal Consistency

Based on the observed alarms, the diagnose tries to estimate
the new system state by updating the set of hypothesis. This
update includes creating new hypothesis and/or reevaluating
the current set of hypotheses. Based on the principle of par-
simony, the diagnoser will create a new hypothesis only if
current alarm cannot be explained using current hypotheses.

Consider the event vk = (d, t) indicating that a monitored
discrepancy d has changed its state from OFF to ON at time
t = Time(vk). Assume that d is of OR-type. That is, d is an
OR-type monitored discrepancy that is triggered at time index
k. Then the signalling discrepancy d is said to be temporally
consistent with the h if (∃v′ ∈ Parents(d)) such that

(HStateh
k(v′), PStatek(d)) ∈ OCk,

where Parents(d) denotes the set of parents of the node d
in the HFPG model. That is one of the parents of v has a
hypothetical state with respect to h that is OR-causal to the
current physical state of d.

Consistency for AND-type nodes depends on the AND-
causality relationship. Let d be an AND-type monitored dis-
crepancy that is triggered at time index k. Then the signalling
discrepancy d is said to be temporally consistent with the hy-
pothesis h if

(HStateh
k(Parents(d)), PStatek(d)) ∈ ACk

The above condition requires that all parents of d have a hy-
pothetical state with respect to hf that is AND-causal to the
current physical state of d. Note that in the above definition,
all of the parents of d must have a hypothetical state with
respect to the same hypothesis h. In the above conditions, it
is assumed that the hypothetical state of the parent(s) does
not depends on any other hypothesis, that is, DSeth(v′) = ∅,
where v′ is the corresponding parent of d.

When d is explained by h the correspond state and time
maps is then updated by setting HStateh

k(d) = PStatek(d) =
ON, and HTimeh

k(d) = [t, t]. Consequently, the monitored dis-
crepancy d is added to the set of secondary supporting alarms
of h and the rank of h will be incremented accordingly. In
following we will refer to temporal consistency between nodes
simply as consistency. The consistency relationship at time in-
dex k will be represented by the predicate Consisk ⊆ Hk ×V .
Therefore, Consisk(h, v) is true when the node v is consistent
with the hypothesis hinHk.

Consistency between nodes as defined above for a given hy-
pothesis hf is absolute in the sense that it does not depend
on any other hypothesis. However, it is possible that consis-
tency between a node state and parent node state(s) depends
on more than one hypotheses. Such dependency originates
from the nature of AND-type alarms and can propagate to
OR-type alarms. A consistency relation that depends on more
that one alarm is referred to as conditional consistency. The
conditional consistency relationship at time index k will be
represented by the predicate DConsisk ⊆ Hk × V × P(Hk).
That is, DConsisk(h, v, H ′) is true when the node v is con-
ditionally consistent with the hypothesis h given the set of
hypothesis H ′ ⊂ Hk.

Conditional consistency is defined formally as follows. Let
d be an AND-type monitored discrepancy that is triggered at
time index k. Then the signalling discrepancy d is said to be

conditionally consistent with the hypothesis h given the set
of hypothesis H ′ ⊂ Hk if all the following holds

• (∀dj ∈ Parents(d))(∃hj ∈ H ′) ({HState
hj

k (dj)|j ∈
J}, PStatek(d)) ∈ ACk

• (∃j ∈ J) hj = h

• H ′ =
(⋃

j∈J{hj} ∪ DSethj (dj)
)
− {h}

In the above conditions, J denotes the index set of the par-
ents of the node d. The above condition requires that all the
parents of d have hypothetical states. This set of hypotheti-
cal states of the parent nodes is AND-causal to the current
physical state of d. The second condition requires this set of
hypothetical states of the parent nodes contains a hypothet-
ical state with respect to h. The third condition states that
consistency is conditional on the set of all hypotheses that the
hypothetical state of the parents of d depends on.

Conditional consistency for OR-type alarms is defined as
follows. Let d be an OR-type monitored discrepancy that is
triggered at time index k. Then the signalling discrepancy d
is said to be conditionally consistent with the hypothesis h
given the set H ′ ⊂ Hk if ∃v′ ∈ Parents(d) such that

(HStateh
k(v′), PStatek(d)) ∈ OCk and DSeth

k(v′) = H ′

That is, one of the parents of d, v′ has a hypothetical state
with respect to h that is OR-causal to the current physical
state of d and in addition the hypothetical state of v′ is con-
ditionally dependent on H ′.

When the node d is explained by hf conditional on the set
of hypothesis H ′ the correspond state and time maps is then
updated by setting HStateh

k(d) = ON, HTimeh
k(d) = [t, t], and

DSeth
k(d) = H ′. Consequently, the monitored discrepancy d

is added to the set CS of conditionally supporting alarms of
hf . However, the rank of h will not be incremented in this
case. The rank will only be incremented if h is provided in
conjunction with the set H ′.

Based on the parsimony principle, absolute consistencies
takes precedence over conditional ones. That is, if an alarm
can be explained based on the occurrence of a single failure
mode f , then any other explanation that requires the occur-
rence of several failure modes including f will not be consid-
ered. However, explanations that requires the occurrence of
several failure modes none of which can be used as a single
explanation of the alarm will be considered.

For every event vk = (d, t), d ∈ Da, the reasoner will try
to explain vk based on the current available hypothesis. If
the event cannot be explained based on any of the current
hypothesis, a new set of hypothesis will generated to explain d.
In the case of OR-type discrepancies the reasoner will generate
a hypothesis for each failure mode directly connected to d.
Formally, let f be a failure mode directly connected to the
OR-type discrepancy d. A new hypothesis for f is created if all
the following holds.

• EStatek((f, d)) = ON,
• tmin((f, d)) ≤ (

T(k)− ETime((f, d))
) ≤ tmax((f, d))

In the new hypothesis hf the hypothetical state of f ,

HState
hf

k (f), is set to ON and the corresponding interval is
set to HTimeh

k(d) = [t1, t2], where

t1 = Time(k)− tmin(f, d), and

t2 = min(ETime((f, d)), Time(k)− tmax(f, d))



Note that condition for generating hf ensures that t1 ≤ t2.
Also, in the new hypothesis hf , the corresponding state and

time maps is then updated by setting HState
hf

k (d) = ON, and

HTime
hf

k (d) = [t, t]. The monitored discrepancy d is added to
the set of primary supporting alarms of hf and the rank of
hf will be set to 1.

The case when d is an AND-type discrepancy is treated sim-
ilarly. In this case a new hypothesis for each failure mode f
directly connected to d is generated similar to the OR-type
case. The hypothetical state and interval of f is also set in
the same way. However, the hypothesis generated in this case
are temporary hypothesis. Once all possible new hypothesis
are generated, the reasoner will try to explain the alarm at d
using the conditional consistency definition for AND-nodes as
discussed earlier in this section. If the alarm cannot be ex-
plained using the new hypotheses the corresponding sensor
will be declared faulty.

Algorithm 1 The Update Hypothesis algorithm

Input: vk = (d, t)
Explained := false

for all h in Hk do
if Consisk(h, d) then

Explained := true

h.SS.add(d); Rank(h) := Rank(h) + 1
HStateh

k(d) := ON; HTimeh
k(d) := [t, t]

else if DConsisk(h, d, H ′) then
Explained := true; h.CS.add(d)
HStateh

k(d) := ON; HTimeh
k(d) := [t, t]; DSeth

k(d) := H ′

end if
end for
if not Explained then

for all f in Parents(d) ∩ F do
if EStatek(f, d) = ON and tmin((f, d)) ≤ (

t −
ETime((f, d))

) ≤ tmax((f, d)) then
if DC(d) := OR then

hf = Hk.AddNewHypo(f); Explained := true

else
hf = Hk.AddNewTempHypo(f)

end if
HState

hf

k (f) := ON; Rank(hf ) := 1

HTime
hf

k (f) := [(Time(k) −
tmin(f, d)), min(ETime((f, d)), Time(k)−tmax(f, d))]

HState
hf

k (d) := ON; HTime
hf

k (d) := [t, t]
end if

end for
if DC(d) = AND then

for all h in Hk do
if DConsisk(h, d, H ′) then

Explained := true; h.CS.add(d); DSeth
k(d) := H ′

HStateh
k(d) := ON; HTimeh

k(d) := [t, t]
end if

end for
end if

end if
if not Explained then

Hk.RemoveTempHypotheses
FalseAlarms.add(d); DS(d) = False

end if

Finally, if the new event (alarm) (d, t) cannot be explained
by either consistency relationship with existing hypothesis or
by generating new hypothesis, then the alarm is declared an
absolute false alarm. In this case, the type of corresponding
discrepancy will be changed to a non-monitored discrepancy,
that is, DS(d) will be set to False and any physical event
correspond to the discrepancy d will be ignored. Algorithm 1
shows the main part of the updating hypotheses procedure.

4.3 Generating Failure Report

In this stage, current hypotheses are examined for possible
conflicts due to common paths. The ranks of consistent hy-
potheses sets are updated counting into effect mutual depen-
dencies. The hypotheses set with the highest ranking is used
to generate the failure report which contains an estimation of
the current failure modes, their time of occurrence, and any
possible sensor failures.

4.4 Complexity Analysis

The HFPG model is implemented as an adjacency matrix,
and therefore both BFS and DFS searching algorithms are
O(n + m)2 where n is the number of failure modes and n is
the number of discrepancies. The worst case number of hy-
potheses is O(nm). However, the number of hypotheses in
typical practical situations is more likely to be within O(n).
Updating the hypotheses set is done by updating the consis-
tency relation between nodes in the graph which is done by
searching the graph recursively until the set reach a settling
point (for the given hypothesis). This part is of polynomial
complexity on the size of the graph and the current num-
ber of hypothesis. Resolving the conflict between hypothesis
is done by generating all possible combinations of hypothesis
and therefore is of exponential complexity with respect to the
number of hypotheses.
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