
Blocking Detection in Discrete Event Systems

Sherif Abdelwahed
sherif.abdelwahed@vanderbilt.edu

Institute for Software Integrated Systems
Vanderbilt University
Nashville, TN, USA

W. M. Wonham
wonham@control.toronto.edu

Department of Electrical Engineering
University of Toronto

Toronto, Ontario, Canada

Abstract

In this paper we present an approach for blocking de-
tection in multiprocess DES. In the proposed approach,
potential blocking states are first identified by examin-
ing shared transitions in the system components and
then tested for their reachability.

1 Introduction

Blocking is a major problem in multiprocess discrete
event systems (DES). Blocking originates from the na-
ture of the synchronous communication between the
components. Depending on the existence of possible
transitions, blocking states can be described as either
deadlock or livelock. Deadlock occurs when the system
resources have been occupied in such a way that the set
of system components cannot continue their activities.
Livelock, on the other hand, occurs when the system is
trapped in endless cycles that do not lead to success-
ful termination. Static reachability analysis procedures
provide a method for automatically detecting blocking
situations in multiprocess systems. However, they usu-
ally require exhaustive searching of the state space of
the system and hence suffer from the state explosion
problem of multiprocess systems.

Several approaches have been proposed to avoid search-
ing the entire state space of the system by exploiting
certain regularities in the system structure. Partial or-
der reduction [4] is an instance of these approaches in
which the effect of representing concurrency is allevi-
ated with interleaving. Symmetrical reduction is an-
other approach in which symmetry in the system is
traced back to its components and then exploited to
reduce the complexity of the reachability analysis [5].
See [2] for a survey on reduction techniques for blocking
detection in logical systems.

In this paper, an alternative approach is proposed to
identify blocking states of both forms for multiprocess
discrete event systems. In this approach only relevant
parts of the system behavior are explored. In DES
with relatively few shared events, the saving offered by
this approach could surpass its overhead and the over-
all computation could be significantly less than direct

reachability analysis procedures.

The paper is organized as follows. Section 2 introduces
basic facts and notation used in this paper. In Section
3 we introduce the blocking problem in multiprocess
discrete event systems. A procedure for deadlock de-
tection problem is introduced in Section 4. A concep-
tually similar livelock detection procedure is presented
in Section 5. Proofs of the propositions and theorems
in this paper can be found in [1].

2 Preliminaries and Notation

Let Σ be an alphabet representing the events in the
process under consideration. A string or word is a
sequence of events. We will write Σ+ for the set
of all nonempty finite strings with events in Σ, and
Σ∗ = Σ+ ∪ {ε}, where ε �∈ Σ denotes the empty string.
A language over the alphabet Σ is any subset of Σ∗.
The set of languages over Σ will be denoted L(Σ). A
string s′ ∈ Σ∗ is a prefix of s ∈ Σ∗, denoted s′ ≤ s,
if there exists u ∈ Σ∗ such that s′u = s. The prefix
closure of a language H ⊆ Σ∗, denoted H, is the set of
all strings in Σ∗ that are prefixes of strings in H. The
complement of a language L ⊆ Σ∗ is defined as Σ∗ −L
and is denoted Lc.

An automaton is a 5-tuple structure A =
(Q,Σ, δ, qo, Qm), where Q is a finite set of states,
Σ is a finite nonempty set of events, δ : Q × Σ → Q
is a (partial) transition function, qo ∈ Q is the initial
state, and Qm ⊆ Q is a nonempty set of marker states.
If δ(q, σ) is defined, then we say that σ is eligible
at q in A. This can also be expressed by the map
EligA : Q → Pwr(Σ) which assigns to each state in
A the set of eligible events. The map δ is extended
to strings in the usual way. We will write �A(q) to
denote the set of all states reachable from q in A. For
a language L ∈ L(Σ), we will write A(L) to denote the
minimal automaton that generates L.

We will extend the above notation to handle multipro-
cess systems. Let I be the index set of a collection of
processes. An alphabet vector over I is a set {Σi|i ∈ I}
of alphabets. In the following we will use bold letters
to distinguish vector quantities. Let Σ = {Σi|i ∈ I}
be an alphabet vector. The union of all alphabets in

Σ will be denoted α(Σ) or simply Σ. We will write
Σs or αs(Σ) for the set of shared (synchronous) events
in Σ, namely Σs =

⋃
i�=j (Σi ∩ Σj). A multi-process

environment will be referred to as a process space.

A language vector over Σ is a set L = {Li ⊆ Σ∗
i |i ∈

I}. The set of all language vectors over Σ is de-
noted L(Σ). The language Li is called the ith com-
ponent of L. The decomposition (vector projection)
map P Σ : L(Σ) → L(Σ) associates each language
L ∈ L(Σ) with the language vector {PiL | i ∈ I} where
Pi : Σ∗ → Σ∗

i is the natural projection map that erases
all events other than those of the ith component of
Σ. On the other hand, the composition (synchronous
product) map BΣ : L(Σ) → L(Σ) associates each lan-
guage vector with its synchronous product ‖L as de-
fined in [8]. To simplify notation we will write PBΣ to
denote the composition P Σ ◦ BΣ : L(Σ) → L(Σ), and
BP Σ for the composition BΣ ◦ P Σ : L(Σ) → L(Σ).

3 Blocking in Multiprocess DES

A dynamic system is said to be blocked if it contains a
reachable state from which the system cannot reach any
marked state. These states are referred to as blocking
states. In multiprocess environments, the composite
system may contain blocking states even if its individ-
ual components are not blocked. In general, any vector
language L in a process space Σ satisfies

BΣ(L) ⊆ BΣ(L)

where L = {Li | i ∈ I}. However, it is easy to see that
the other direction of the inclusion does not hold in
general. A language vector L is said to be unblocked
or live if BΣ(L) = BΣ(L). Clearly, L is live if the set
{P−1

i Li | i ∈ I} is non-conflicting, that is, satisfies

⋂

i∈I

P−1
i Li =

⋂

i∈I

P−1
i Li

It is important to distinguish between two forms of
blocking in discrete event systems. The first corre-
sponds to the case when an unmarked reachable state
cannot reach any other state. Such a state is referred
to as a deadlock state. Otherwise, if a blocking state
can reach unmarked states it is referred to as a livelock
state. Clearly, the two forms are exhaustive, that is, a
blocking state must be of either form but not both.

4 Deadlock Detection in Multiprocess Systems

Let L be a language vector in Σ. A string s ∈ BΣ(L)
is called nonterminal if it is not in BΣ(L). A language
vector L is said to be deadlock-free if the set of eligi-
ble events at every nonterminal string in BΣ(L) is not

empty. Formally, L is deadlock-free if

(∀s ∈ (BΣ(L) − BΣ(L)))(∃σ ∈ Σ) sσ ∈ BΣ(L)

Deadlock can be detected by exploring the entire state
space of the system and identifying those non-marked
states with no eligible events. An alternative approach
is to identify potential blocking states first and then to
check their reachability. This approach will be referred
to as detect-first approach. The key to this approach is
given in the following result which provides a charac-
terization for deadlock freeness in multiprocess discrete
event systems. For a given subset J of I, let Σ(J) de-
note the set of events shared exclusively by the set of
J components. Namely, Σ(J) = ∩j∈JΣj − ∪i∈I−JΣi.

Theorem 4.1 The language vector L is deadlock-free
if and only if

(∀s ∈ BΣ(L) − BΣ(L))(∃J ⊆ I)
⋂

j∈J

EligLj
(Pjs) ∩ Σ(J) �= ∅ �

The above theorem shows that deadlock can be traced
by examining the set of eligible events at local strings
generated by the system components. Clearly, if a
deadlock occurs at a given string then it also occurs
at the corresponding state in the system’s automaton.
Hence, a language vector L cannot be deadlocked after
a string s if (and only if) there exists an asynchronous
(local) event enabled at any of the vector projection
components of this string. Consequently, in detect-
ing global deadlocked states, we only need to consider
those combinations of local states all of whose eligible
events are shared. These combinations (global states)
are further refined by testing them with respect to the
above criterion to determine if they identify potential
deadlock states in the composite system. Each poten-
tial deadlock state is then traced backward to check if
it is reachable in the composite system. The following
Proposition, shows that this search can also be per-
formed by considering only the shared behavior of the
system.

Proposition 4.1 Let L be a language vector in a pro-
cess space Σ. Then

BΣ(L) = ∅ ⇐⇒ BΣ(Ps(L)) = ∅.
�

Therefore, a given potential deadlock state is reach-
able if and only if the corresponding state in the pro-
jected composite system is reachable. Testing reach-
ability through the projected system, Ps(BΣ(L)), can
offer a computational advantage in loosely coupled sys-
tems, given that Ps(BΣ(L)) = BΣ(Ps(L)), that is, syn-
chronous product is commutative with the projection
of shared events [1].

To further clarify the detect-first approach for dead-
lock detection, consider the language vector L repre-
sented by a set of automata Ai = (Σi, Qi, δi, qoi, Qmi)},
i ∈ I where Ai = A(Li). Every automaton Ai is
assumed trim and therefore live. Let A = ‖i∈IAi

be the synchronous product automaton given by the
tuple (Σ, Q, δ, qo, Qm) where Σ = ∪i∈IΣi and Q =
Q1 × Q2 × . . . × Qn be the set of all possible states in
A. Transitions in the automaton A are defined through
the synchronous product operation in the usual way.
Clearly, Lm(A) = BΣ(L). However L(A) may not be
equal to BΣ(L) due to possible blocking states in the
composite system. Define PDS(A) as the set of potential
deadlock states in A as outlined by the last theorem,
namely

PDS(A) = {(q1, . . . , qn) ∈ Q | (∀J ⊆ I)
⋂

j∈J

EligAj
({qj} ∩ (Qj − Qjm)) ∩ Σ(J) = ∅}

Therefore, the set PDS(A) can be computed by testing
only unmarked local states1 where all eligible events are
shared. The set of (actual) deadlock states in A is then
equal to PDS(A) ∩ Reach(A), where Reach(A) denotes
the set of all reachable states in A. A direct backward
reachability procedure can be used to determine if a
given state q ∈ Q is reachable in A.

For loosely coupled systems, testing that a given global
state q belongs to the set Reach(A) can be conducted
more efficiently by considering only the shared behavior
of A namely Ps(A). The projection map Ps commutes
with the synchronous product operation and there-
fore Ps(A) can be computed indirectly as ‖i∈IPs(Ai).
Based on Proposition 4.1, q ∈ Reach(A) if and only if
there exists x ∈ X where x ∈ Reach(Ps(A)) and q ∈ x.

The complexity of the detect-first procedure depends
to a large extent on the shared behavior of the system.
The initial part of the procedure identifies those com-
binations of local states with all shared eligible events.
Therefore the worst case complexity of this part is
of the order of |Qs

1| × . . . × |Qs
n| where Qs

i ⊆ Qi de-
notes the set of states in the ith component of the sys-
tem having only shared eligible events. However, the
typical complexity of this part is much smaller than
the worst case as many combinations can be excluded
during the test. For instance, if for some J ⊆ I we
have

⋂
j∈J EligAj

(qj) ∩ Σ(J) �= ∅, then it follows from
Theorem 4.1 that any global state containing the set
{qj | j ∈ J} is deadlock-free. In fact, the efficiency of
computing the set PDS(A) can vary substantially de-
pending on the order in which the set of local states is
tested.

In the second part of the procedure, the reachability
of potential deadlock states is checked. The worst case

1This is based on the convention that EligB(∅) = ∅ for any
automaton B.

complexity of this part is on the order of the state size
of the composite system, |Q|. However, this part would
explore only those states leading to potential deadlock
states. The actual overhead in this part is the trac-
ing of unreachable potential deadlock states. However,
the rate of early termination of such backward tracing
can be high, particularly in loosely coupled systems.
Also, as discussed earlier, a significant reduction of the
complexity of the reachability test can be obtained by
considering only the shared behavior of the system.

Example 4.1 The system shown in the figure below
is a modified version of the Milner scheduler [6]. It
consists of a set of simple components called cyclers.
Figure 1 shows the automaton representation of the ith
cycler, where i ∈ [0 . . . N] for a scheduler consisting of
N +1 cyclers. In this system, state 1i is the initial and
marker state for the first cycler (i = 0) while state 0i is
the initial and marker state for the remaining cyclers
(i ∈ [1 . . . N]). The subscripts of the local components
are taken as mod N , so that xN+1 = x0.

0i 2i

3i4i

5i6i
Ci

yi−1

xi+1

yi−1

xi+1

1i

K

ci

bi

aixi, yi

bi

ci

. . .C0 C1 CN

Figure 1: The process scheduler

Applying the detect-first procedure, potential deadlock
states are selected from those states with all shared
eligible events, that is, the set

Qs = {(q0ro
, q1r1 , . . . , qNrN

)|(∀j ∈ [0 . . . n] rj ∈ [0, 3]}

The set Qs can be tested thoroughly with respect to the
definition of PDS(A). However, working by eliminating
those subsets of Qs that do not correspond to potential
deadlock states can be more efficient for this system.
Clearly, any global state containing any of the combi-
nations (qi0, q(i+1)3) or (qi0, q(i−1)3) for i ∈ [0 . . . N]
cannot be a deadlock state. Excluding these cases
will leave only two potential deadlock states, namely
(q0r, q1r, . . . , qNr) where r ∈ [0, 3]. Backward tracing
will reveal that neither state is reachable. To reach
this conclusion, the backward reachability test explores
2N+1 global states for the first potential-deadlock state
(r = 0) and 3 global states for the second one (the
composite system contains approximately 7N+1 states).
Backward reachability can also be performed using the
projection of the shared behaviour of the system com-
ponents shown in the following diagram.

PsCi

yi−1

PsCo

xo, yo

yN

1i0i1000
xi, yi

x1 xi+1

Potential deadlock states in the system correspond to
the set of states (q′0(r−1), q

′
1r, . . . , q

′
Nr) where r ∈ [0, 1]

in the composite of the components projection. Check-
ing the reachability of these states requires testing only
two global states in the projected system. The com-
plexity of computing the projections is of O(N).

5 Livelock Detection in Multiprocess Systems

The difficulty in detecting livelock states stems from
the dependency on the existence of deadlock states.
Particularly, a livelock state can be defined recursively
as a state with a reachable domain consisting entirely of
a nonempty set of deadlock or livelock states. Detect-
ing livelock states may therefore depend on identifying
deadlock states. Livelock detection can be simplified
by considering those states that can only reach livelock
states. Note that, this is the only source of blocking
if the system is deadlock-free. Given the assumption
of finite state space, the recursive characterization of
livelock leads to the conclusion that any livelock state
must exist within a loop, or more precisely a clique, in
the global system.

Let A = (Σ, Q, δ, qo, Qm) be a deadlock-free automa-
ton. Based on the above description, a state q ∈ A is
a livelock state iff,

�A(q) ∩ Qm = ∅ ∧ (∀q′ ∈ �A(q))EligA(q′) �= ∅
The first condition characterizes also semi-livelock
states, while the last condition distinguishes (strict)
livelock states as those which can only lead to another
livelock state. The automaton A is said to be livelock-
free if it does not contain any livelock state.

Let X be a nonempty subset of Q in A. Let δX denote
the restriction of δ to the states in X, and let �X

A : X →
Pwr(X) be the reachability map that assigns each state
x ∈ X to those states in X that are reachable from x
via transitions from δX . The set X is called a clique
in A if every state in X can reach any other state in X
via transitions from δX . Formally, a set of states X is
a clique in A if X �= ∅ and

(∀x, x′ ∈ X) x′ ∈ �X
A (x)

A state xo ∈ X is called an input state for the clique
X if xo is the initial state of A or

(∃q ∈ Q − X)(∃σ ∈ Σ) δ(q, σ) = xo

In this case the transition (q, σ, xo) is said to be an input
transition for the clique X. Similarly, a state xm ∈ X
is called an output state in X if it is a marker state in
A or there exists a transition (q, σ, xm) with q ∈ Q−X.
In this case, the transition (q, σ, xm) is then an output
transition for the clique Q′. For a clique set X we
will write Xo for its set of input states and Xm for its
set of output states. Therefore, a system may enter a
clique from one of its input states, then it can stay in
the clique indefinitely or exit the clique from one of its
output states. The tuple (X,Xo,Xm) will be referred
to as a clique structure in A.

A clique is said to be reachable if any (and therefore all)
of its states is reachable, and is said to be coreachable if
any (and therefore all) of its states is coreachable. Note
that if an automaton A is reachable then every clique
structure in A must contain at least one input state,
and if A is coreachable then every clique structure in
A must contain at least one output state. A clique is
said to be maximal if there is no other clique X ′ =
(X ′,X ′

o,X
′
m) in A such that X ⊆ X ′, Xo ⊆ X ′

o, and
Xm ⊆ X ′

m. A clique is said to be terminal if each
reachable state from the clique is in the clique, that is,
if �A(X) = X. It is easy to see that every terminal
clique is maximal but the reverse is not generally true.

Proposition 5.1 Assume that the automaton A is
deadlock-free. Then A is livelock-free if and only if
every reachable terminal clique in A contains a marked
state. �

Therefore, livelock states can be detected by testing
the set of terminal cliques in the system2. The above
result can be used as a basis for developing a detect-first
procedure to livelock detection in multiprocess systems.
First we need to identify the conditions in the system
components that characterize a terminal clique in the
composite system. To this end, let (X,Xo,Xm) be a
clique structure in A. A clique machine is a tuple M =
(X,xo,Xm) where xo ∈ Xo. The transition function of
this machine is δX . A clique machine M = (X,xo,Xm)
is said to be maximal if there is no other clique machine
M ′ = (X ′, x′

o,X
′
m) such that x′

o = xo, X ⊆ X ′, and
Xm ⊆ X ′

m, that is if it is not a submachine of any other
clique machine. As mentioned earlier, if A is trim then
every clique in A must have at least one input and one
output state. Therefore, in this case, each clique is
associated with at least one maximal clique machine.

Let A be a set of trim automata {Ai =
(Σi, Qi, δi, qoi, Qmi) | i ∈ I} over a process space Σ
and let A = ‖Ai = (Σ, Q, δ, qo, Qm) be their syn-
chronous product. For a nonempty J ⊆ I let M =
{Mj = (xjo,Xj ,Xjm) | (j ∈ J)} be a set of clique ma-

2Finding all possible cliques in a given graph is a known NP-
complete problem as it requires examining all possible subsets of
the set of states [3].

chines in A. The set M is said to be a clique vec-
tor if M = ‖M is a clique machine, where ‖ is the
synchronous product operation[8] for the process space
Σ. The composite machine M is a tuple (xo,X,Xm),
where xo = {xjo | j ∈ J} is called the local input state
for M , X ⊆ ×j∈JXj is the set of states reachable from
xo in M , and Xm = X ∩ ×j∈JXjm. By definition,
the set M is a clique vector if and only if there is a
nonempty string connecting xo to itself through states
from X. Let y ∈ ×i∈I−JQi and x ∈ X. We will
write (y, x) to denote the global state q corresponding
to pair x and y. The tuple (M , y) will be referred to
as a clique module. The clique module (M , y) is said
to be reachable if

(xo, y) ∈ �A(qo)

That is, the global state (xo, y) is reachable in the com-
posite system. The clique module (M , y) is said to be
terminal if

(∀q ∈ Q) q ∈ �A(xo, y) =⇒ (∃x ∈ X)q = (x, y)

That is, any reachable global state from (xo, y) must
remain in the clique while preserving its y part. To sat-
isfy this condition it is necessary that y be deadlocked
with respect to M , i.e., there should be no eligible event
at y that is also an eligible event at any x ∈ X. Clearly,
this also requires that y have no asynchronous eligible
events. Finally, (M , y) is said to be marked if

(∃xm ∈ Xm) (xm, y) ∈ Qm

That is, a the clique module contains a global marked
state. Intuitively, a clique vector M = {Mj =
(xjo,Xj ,Xjm) | (j ∈ J)} is a set of local cliques that
compose to a clique in the global system independently
of any other components in I − J . Therefore, for any
y ∈ ×i∈I−JQi the tuple (M , y) corresponds to a po-
tential clique in the global system. The tuple (M , y)
only needs to be reachable to correspond to an actual
clique, that is when (xo, y) is reachable. The condi-
tions for termination and marking can be formulated
directly for this tuple through this correspondence.

Theorem 5.1 Let A be a vector of trim automata in
Σ where A = ‖A is deadlock-free. Then A is livelock-
free if and only if every reachable and terminal clique
module in A is marked. �

Therefore, livelock situations can be traced from reach-
able and terminal clique modules that are not marked.
Identifying modules, however, requires identifying all
cliques in the system components and examining the
synchronous behaviour of all possible combinations of
these cliques. In general, the number of cliques in
a given automaton may exceed its number of states.
However, many of these combinations are expected to

be eliminated early by examining the criteria for a live-
lock situation. In summary, a set of clique machines
M = {Mj = (xjo,Xj ,Xjm) | j ∈ J} and a set of states
y ∈ ×i∈I−JQi in a vector automaton A identifies a
livelock situation in the composite system A = ‖A iff

1. (M , y) is a clique module: M = ‖M =
(xo,X,Xm) satisfies xo ∈ �M (xo)

2. (M , y) is reachable in A: (xo, y) ∈ �A(qo)

3. (M , y) is terminal in A: Any state reachable from
(xo, y) state in A must be in the form (x, y) for
some x ∈ X. That is, y is deadlocked with re-
spect to the set of states X.

4. (M , y) is not marked: Every global state (xm, y)
must not be in Qm, the set of marked states of
the composite system.

A clique module is first identified by a composable set
of cliques M and set of states y that is deadlocked
with respect to the states in ‖M . The clique module
(M , y) identifies a potential livelock source if it satis-
fies any of the above conditions. It becomes a livelock
source if it satisfies all the above condition. A list of
potential livelock sources is built and updated by test-
ing the conditions above for reachability and marking.
A clique module (M , y) is removed from the list when
it fails any of these conditions.

The detection procedure can be enhanced by utiliz-
ing the reachability and coreachability information as
they accumulate during the detection process. Another
enhancement can be obtained by observing the inclu-
sion of one clique machine into another in the sys-
tem components. Formally, a clique machine M =
(xo,X,Xm) is a submachine of another clique machine
M ′ = (x′

o,X
′,X ′

m) if xo = x′
o, X ⊆ X ′, and Xm ⊆ X ′

m.
A clique machine is said to maximal if it is not a sub-
machine of any other clique machine. Let M be a sub-
machine of M ′ and let M be a clique vector containing
M , and M ′ be the clique vector obtained from M by
substituting M with M ′. It is easy to see that if M ′

does not satisfy any one of the above conditions then
M does not satisfy it either. And if M ′ satisfies all
these conditions then it is a source of livelock and the
overall set of states, including M irrespective of its
status with respect to the above condition, needs to
be examined. Therefore, we only need to consider the
set of maximal clique machines in the detecting pro-
cedure. The detect-first procedure outlined above can
be used to confirm that the system in Example 4.1 is
livelock-free, simply because the only possible clique
module is the whole system which must be marked if
the composite system is a clique.

Example 5.1 In this example we consider the alter-
nating bit protocol (ABP) as presented in [7]. The ba-
sic components of the protocol are shown in Figure 2.

set timer

td0 rack

get datatd1rack

reset timer reset timer

Sender

aerror, timeout

aerror, timeout

set timerget data

rack, aerroralose,
rd0,dlose, rerrordlose,rd1, rerror

sacksd1 sd0

Data Channel Ack Channel

0 12 0 1

5 4 3

210

Reciever

rd0

rd0

rd1

sack

rerror

rerror

put data

sack

put data

rd1

9 8 7 6 5

43210

Figure 2: The alternating bit protocol model

Consider first the deadlock issue. The local sets of
states with only shared eligible events are

OSE(Sender) = {2, 7}, OSE(D-Channel) = {0},
OSE(Receiver) = {0, 2, 3, 5}, OSE(A-Channel) = {0}

where OSE(A) denote the set of states in A that have
only shared eligible events. The set of potential dead-
lock states is then tested based on Theorem 4.1 from
which we can confirm that the global states (2,X, 0,X)
and (7,X,X, 0), where X denotes any state in the cor-
responding component, cannot correspond to a dead-
lock state. However, these two combinations are ex-
actly all possible global states with only shared eligible
events. This shows that the protocol is deadlock-free.

To detect livelock states in the protocol, the set of max-
imal clique machines in each component has to be iden-
tified. In the sender we can identify the following max-
imal clique machines.

S1 = (Q1, 0, {0}), S2 = ({1, 2, 3}, 1, {3}),
S3 = ({1, 2, 3}, 6, {6, 7, 8})
And in the receiver machine we have,

R1 = (Q2, 0, {0}), R2 = ({2, 3}, 2, {3}), R3 = ({3}, 3, {3}),
R4 = ({5, 0}, 0, {0}), R5 = ({5, 0}, 5, {0})

In both the Data-Channel and the Ack-channel the
only maximal clique is the machine itself. We de-
note these cliques as D1 and A1 respectively. First

consider those combinations containing S1. Exam-
ining this clique will show that it needs to synchro-
nize with events from the other three machines in
order to remain as a loop in the composite struc-
ture. Therefore, we need to consider only clique com-
binations containing a clique from each component.
The combinations (S1, R1,D1, A1), (S1, R4,D1, A1),
and (S1, R5,D1, A1) are excluded as they are al-
ways marked. The combinations (S1, R2,D1, A1), and
(S1, R3,D1, A1) are also excluded as their local ini-
tial states (0, 2, 0, 0), and (0, 3, 0, 0) are not reachable.
Testing the remaining combinations will reveal that the
system is livelock-free. �

As shown in the above example, there are several ways
a given clique vector M could be excluded from the
list of potential livelock generators. The efficiency of
detecting livelock using the detect-first approach de-
pends to a large extent on the way the given conditions
are tested. The detection procedure can be enhanced
by conducting some tests before others. For instance,
checking if a given clique vector M is reachable or ter-
minal may be more efficient than testing if it is a mod-
ule (computing ‖M) if the size of the clique sets in M
is relatively large. The reverse can be true if the size
of the clique sets in M is relatively small.

References

[1] S. Abdelwahed. Interacting Discrete Event Sys-
tems: Modelling, Verification, and Supervisory Con-
trol. PhD thesis, University of Toronto, 2002.

[2] J. Corbett. Evaluating deadlock detection meth-
ods for concurrent software. IEEE Trans. on Software
Engineering, 22(3):1–22, 1996.

[3] M.R. Garey and D.S. Johnson. Computers and
Intractability: A Guide to the Theory of NP Complete-
ness. W.H. Freeman and Company, New York, 1979.

[4] P. Godefroid. Partial Order Methods for the Ver-
ification of Concurrent Systems. PhD thesis, Univ. de
Liege, 1994.

[5] C. E. McDowell. A practical algorithm for static
analysis of parallel algorithms. Journal of Parallel and
Distributed Processing, 6(3):515–536, June 1989.

[6] R. Milner. A Calculus of Communicating Sys-
tems, volume 92 of LNCS. Springer-Verlag, 1980.

[7] K. Rudie. Decentralized Control of Discrete
Event Systems. PhD thesis, Univ. of Toronto, 1992.

[8] W.M. Wonham. Notes on Control of
Discrete-Event Systems. ECE Department,
University of Toronto, revised 1 July 2002.
http://www.control.utoronto.ca/DES.

