

Institute for Software-Integrated Systems

Technical Report

TR#: ISIS-15-105

Title: Architecture Exploration in the META Toolchain

Authors: Himanshu Neema, Sandeep Neema and Ted Bapty

This research is supported by the Defense Advanced Research Project Agency

(DARPA)’s AVM META program under award #HR0011-13-C-0041.

Copyright (C) ISIS/Vanderbilt University, 2015

i

Table of Contents

List of Figures .. iii

List of Tables ... iv

List of Acronyms and Abbreviations .. v

1.0 Summary ... 1

1.1 Overview .. 1

1.2 Goal .. 2

1.3 Summary of Approach ... 2

2.0 Introduction ... 4

2.1 Design Space Exploration of Cyber Physical Systems .. 4

2.2 Design Space Exploration in META Tool chain ... 4

3.0 Design Space Modeling .. 6

3.1 Design Space Concepts .. 6

3.2 Design Space Modeling Language ... 7

3.3 Design Space Constraint Types.. 9

3.3.1 Contextual Non-linear OCL Constraints ... 9

3.3.2 Visual Constraints ... 10

3.3.3 Parameter Constraints ... 11

3.3.4 DecisionGroup constraints .. 12

3.3.5 Property Constraints .. 12

3.3.6 Conditional Property Constraints .. 13

4.0 Overview of Design Space Tools .. 14

4.1 Design Space Exploration Tool (DESERT) ... 14

4.2 Design Space Component Assembly Exporter (CAExporter) 16

4.3 Design Space Manipulation Tool (DSRefactorer) ... 18

4.4 Design Space Refinement Tool (DSRefiner) ... 21

4.5 Design Space Criticality Meter (DSCriticalityMeter) .. 25

4.6 Supporting META Tools .. 26

ii

5.0 Iterative Design Process in META ... 28

6.0 Case Study .. 30

7.0 Conclusion .. 32

8.0 Future Work .. 33

Bibliography ... 34

iii

List of Figures

Figure 1: Design Space Tools in OpenMETA ... 5

Figure 2: Simplified Metamodel of the Design Space ... 8

Figure 3: Context constraint to ensure IFV meets hill climb performance ... 9

Figure 4: Visual constraint specifying an engine-transmission compatibility requirement 11

Figure 5: Parameter range specification leading to generation of a parameter constraint 11

Figure 6: Decision Group constraint to specify a set of compatibility constraints 12

Figure 7: Property constraint restricting total drivetrain weight ... 13

Figure 8: Conditional property constraint .. 13

Figure 9: Design Space Exploration Tool (DESERT) ... 14

Figure 10: Sample exported design configurations .. 17

Figure 11: Design configurations converted to component assemblies ... 18

Figure 12: Top-level view of example design space for IFV drivetrain ... 22

Figure 13: Design configurations for example IFV design space in a tree-viewer 23

Figure 14: Generated configurations (with component assembly) for example IFV design space 24

Figure 15: Refined design space for chosen configurations of IFV design space 24

Figure 16: Refined (ISG) design container in refined IFV design space .. 25

Figure 17: Criticality metrics generated by Design Space Criticality Meter .. 26

Figure 18: Iterative design process in META ... 29

Figure 19: Drive-line design space model ... 30

Figure 20: Constraints used in the drive-line design space .. 31

Figure 21: Project Analyzer showing parallel axis plot and multi-attribute decision analysis 31

iv

List of Tables

Table 1: Mathematical functions supported for specifying design constraints.. 10

Table 2: Use-cases of Design Space Manipulation .. 19

v

List of Acronyms and Abbreviations

CPS Cyber-Physical System

CyPhyML Cyber-Physical Modeling Language

DESERT Design Space Exploration Tool

DSE Design Space Exploration

DSEM Design Space Exploration and Manipulation

PET Parametric Exploration Tool

GME Generic Modeling Language

DSML Domain-Specific Modeling Language

CAD Computer-Aided Design

FEA Finite-Element Analysis

CFD Computational Fluid Dynamics

CAE Computer Aided Engineering

CAT Component Authoring Tool

CLM Component Library Manager

MI Master Interpreter

DS Design Space

CA Component Assembly

DC Design Container

DE Design Element

CO Component

COR Component Reference

DCC Design Container of Compound type

DCA Design Container of Alternative type

DCO Design Container of Optional type

RF Root Folder

IFV Infantry Fighting Vehicle

ISG Integrated Starter Generator Assembly

1

1.0 Summary

Cyber-Physical Systems (CPS) [1] are engineered systems that require tight interaction

between physical and computational components. Designing a CPS is highly challenging [2]

because these systems are inherently complex, need significant effort to describe and evaluate a

vast set of cross-disciplinary interactions, and require seamless meshing of physical elements

with corresponding software artifacts. Moreover, a large set of architectural and compositional

alternatives must be systematically explored and evaluated in the context of a highly constrained

design space. The constraints imposed on the selection of alternatives are derived from the

system’s functional, performance, dimensional, physical, and economical objectives.

Furthermore, the design process of these systems is highly iterative and requires continuous

integration of design generation with design selection and manipulation supported by design

analyses.

To enable the iterative design process for CPS-s, we have developed a design tool chain,

OpenMETA [4] [9], built around a Domain-Specific Modeling Language (DSML) [3], called the

Cyber-Physical Modeling Language (CyPhyML). In this report, we describe the elements of

OpenMETA that deal with Design Space Exploration and Manipulation (DSEM) for CPS-s.

These parts of the tool chain collectively provide modeling methods and tools for exploration

and visualization of designs and design spaces, solving complex design constraints, and effective

management of the design spaces and designs.

In particular, the report will cover the key language aspects dealing with design space

construction and specification of design constraints arising from component interactions and due

to functional and practical system requirements. Also, we discuss our approach to effectively

manage large-scale design spaces that are pervasive in META design problems. We provide

details of key design space tools that were developed in META to support the above process. We

also describe the iterative design process that is crucial for designing complex real-world

systems and highlight how META’s design space tools support it. Further, we discuss how

designs are evaluated and how design space is evolved using the analysis results with the help of

design space tools. We also present a detailed case study to exemplify our approach and usage of

the design space tools.

1.1 Overview

Design Space Exploration for complex CPS cannot be realized as a closed form analytical

search procedure and requires multiple techniques, at multiple abstractions and fidelity, and

involves complex iterations. Existing engineering practice follows the classical systems

engineering design process model, which includes requirements and design iterations, with

system analysis and controls development going in parallel. However, in the context of large-

scale CPS-s, the re-design cycles require tremendous amount of work, time, and resources. This

is further exacerbated by pushing the verification and validation to the testing phase. Not only

does that introduce errors much later in the design phase, it also lends the design process itself

2

highly inflexible to changes in requirements and implementation technologies, which are

commonplace in the modern continually evolving globally connected world. What is needed is a

design process that is not only able to easily adapt changes in the design requirements, but is also

tied to an integrated testing framework that allows for continual design verification and evolution

of the design space itself to produce better and faster designs.

The OpenMETA tool chain provides unique capabilities in this respect and incorporates a

comprehensive suite of methods for design space exploration such as discrete combinatorial

design space exploration, parametric design analysis, simulation based design metric evaluation,

and dashboard for design space metric visualization.

1.2 Goal

Traditional design processes employ the waterfall approach where the requirements

definition and design phase precedes the testing and evaluation of designs. The main problems

with the traditional approach are:

 Designs developed are purposed for use of a particular use-case and need substantial re-

work if the design needs to be adapted for other applications.

 Problems are discovered much later during the system integration phase and so the

optimal system architecture and components may not be determined earlier in the design process.

 Requirements often change during the design process, which often requires re-designing

the systems.

Our goal for design process in META is to provide a comprehensive set of tools that enable

easier design exploration and adaptation, support integrated testing and evaluation, and enable

near-continuous design evolution for updates in requirements as well as using feedback from

design analyses.

1.3 Summary of Approach

Designing of complex cyber-physical systems is not a straightforward process from

requirements specification to a full design; rather it is an iterative process where the generation

of design configurations must interplay with design requirements as well as design analyses.

Our approach to solve this problem is to provide tools for designers to effectively explore the

design spaces and manage design requirements that may change from day-to-day. Our

architecture design language, Cyber-Physical Modeling Language (or CyPhyML for short)

allows for modeling design spaces and specifying design constraints. Our design space

exploration tool allows for systematic exploration of design spaces to prune design

configurations that do not satisfy design constraints. This tool allows for the selective application

of design constraints to provide detailed feedback of design constraints on validity of design

choices in the design spaces. Further, we provide a set of tools to manipulate the designs and

design spaces in various ways to help designers to evolve the design spaces as the requirements

3

change. Also, we provide integrated testing framework for analyzing and visualizing designs and

various tools to incorporate the results of those analyses to adapt the design spaces.

4

2.0 Introduction

2.1 Design Space Exploration of Cyber Physical Systems

Cyber-Physical Systems (CPS) [1] are systems that require tight interaction between physical

and computational components. These systems span several engineering domains such as

mechanical, electrical, thermal, and cyber. CPS design is highly challenging [2] because these

systems are inherently complex, need significant effort to describe and evaluate a vast set of

cross-domain interactions, and require seamless meshing of physical elements with

corresponding software artifacts. CPS-s involve a large set, or design space, of architectural and

compositional alternatives that must be systematically explored and evaluated. The design spaces

are formulated with these alternatives and design constraints that limit the selection of design

elements to those that satisfy them. These basic constraints are derived from the system’s

functional (e.g., gas, electric, or hybrid drivetrain), performance (e.g., minimum torque of

engine), dimensional (e.g., maximum height or capacity), physical (e.g., weight, join structures),

and economical (e.g. cost) objectives.

Good system design must further consider several factors such as manufacturability, stability,

complexity, reliability, risks, time-to-market, etc. However, we consider these factors as

secondary, coming after the basic set of constraints is satisfied. The discrete selection of

compositional and architectural alternatives based on these constraints form the initial Design

Space Exploration (DSE). The generated configurations are subjected to dynamic analyses for

evaluation against the secondary requirements. The result of these detailed system analyses in

terms of valid design selections and reformulations must be incorporated into the original design

space, which must be re-explored to generate a new set of valid design configurations. This

iterative nature of the design process with strong bidirectional coupling between design activities

and system analysis and verification is a key requirement for CPS design.

2.2 Design Space Exploration in META Tool chain

To enable the iterative design process for CPs-s, we have developed a design tool chain, that

we call OpenMETA [4] [9] (see Figure 1), built around a Domain-Specific Modeling Language

(DSML) [3], called the Cyber-Physical Modeling Language (CyPhyML). The CyPhyML

captures integration interfaces of system components across multiple design domains (e.g.,

Cyber, CAD, and FEA) as well as generic assembly rules given in terms of compositional and

architectural alternatives and hard design constraints for the final assembly. OpenMETA

supports multi-level and multi-fidelity exploration of system-level architectural and parametric

tradeoffs. These tools facilitate the iterative design process by integrating formal qualitative

reasoning methods, DSEM, and automated dynamics and structural analyses of designs. In this

paper, we focus only on tools that support design space exploration and manipulation for CPS-s.

5

Figure 1: Design Space Tools in OpenMETA

6

3.0 Design Space Modeling

3.1 Design Space Concepts
In this section we provide definitions of some of the key concepts related to design space

exploration and manipulation:

Component: A Component is a self-contained, reusable entity that can be used in a design. A

component can be anything from an electrical resistor, a spring, or a transmission. Components

are the basic building blocks of a design space.

Component Model: A Component Model captures everything that we know about a

component. Component models are self-contained and can include schematic, geometric,

physical, and behavioral models of the component. Additionally, component models can provide

data sheet and interface information. As the component models are self-contained, they are

reusable across all META designs.

Property: A property is a way to capture fixed values of characteristics of a component.

Examples of properties could be length of a drive shaft or the maximum output power of a

transmission.

Parameter: A parameter is similar to a property except that the value of a parameter can be

varied by the designers. Examples of parameters could be length of a spring, or allowable torque

range of a transmission.

Component Assembly: A Component Assembly is a fully specified design or part of a design

including all the components, their connections with other components in the assembly, and the

value of their properties and parameters. Final designs in META are Component Assemblies.

Design Space: The Design Space allows the user to model optionality and composition of

multiple components and component assemblies.

Design Element: The key objects that a design space is composed of are Design Elements.

Design Element could also be a child/sub Design Space. Other types of Design Elements are

components, component assemblies, and design containers.

Design Container: Design Container represents a partially specified part of the design or sub-

system and contains a set of components and constraints. There are three types of design

containers: Compound, Alternative, or Optional. All elements of a compound design container

must be part of the final system design. Alternative design containers are used to capture design

choices/trade-offs. The final assembly will include only one of the choices from alternative

design containers. Optional design containers are similar to alternative, but also allow ‘none’ as

an option.

Design Constraint: Design Constraints are used to specify requirements of the design that are

not different from hierarchical composition of components. Examples of design constraints could

be the minimum power requirement of an engine, or maximum speed of a vehicle. Also, these

constraints can specify compatibility restrictions such as a component cannot be chosen if

another component is part of the design. We discuss different types of design constraints

supported in META in the later section.

Seed Design: Seed designs are used to integrate a design flow in META that starts with an

existing system design. This is a highly practical approach as industry typically has a design that

7

is currently in use and needs to start from it instead from scratch and work toward improving it

or make it amenable to changing design requirements.

Design Flow: A design flow refers to ways in which designers proceed with designing

systems. As mentioned above, one of the design flows could be to start from a seed design. Other

example would be to design in a hierarchical top-down method that start from designing the

system as a whole first and then populating it with sub-systems and so on.

Design Space Refactoring/Manipulation: This refers to modifying a Design Element in a

Design Space. The tools in META allow modifying design elements in various ways and provide

refactoring choices based on contextual information of the type and location of the Design

Element.

Design Space Refinement: This refers to the process of selecting a set of well-tested and

verified designs and creating a new design space from these designs. This is used by engineers to

finalize parts of the designs as well as to refine/explore them further. The process helps designers

to reduce design space complexity and effectively manage design spaces.

3.2 Design Space Modeling Language
The CyPyML uses Model-Integrated Computing (MIC) [3] techniques to support design-time

integration of vast number of system-level design aspects and methods, and the automated

exploration and manipulation of design spaces. Model-Integrated Computing (MIC) is the core

technology on which CyPhyML and its tools are built. MIC focuses on the formal representation,

composition, analysis, and manipulation of models during the design process. It places models in

the center of the entire life-cycle of systems, including specification, design, development,

verification, integration, and maintenance. The Generic Modeling Environment (GME) is a

meta-programmable toolkit that enables definition and use of Domain-Specific Modeling

Languages (DSMLs) [3] such as CyPhyML. In MIC, DSMLs are configured through

metamodels, expressed as UML class diagrams, specifying the modeling paradigm of the

application domain. Metamodels characterize the abstract syntax of the DSML, defining which

objects (i.e. boxes, connections, and attributes) are permissible in the language. Simplistically,

DSML is a schema or data model for all possible models that can be expressed by a language. A

DSML for finite state machines would consist of states, and transitions, from which any valid

state machine can be realized. The inherent flexibility and extensibility of GME via metamodels

make it an ideal platform for CPS design and analysis using CyPhyML.

8

Figure 2: Simplified Metamodel of the Design Space

CyPhyML captures the concepts of design models in various CPS domains, specifies how

these concepts are organized and related, and specifies the rules governing their composition.

OpenMETA consists of a number of model interpreters and analysis tools, which can be used to

generate system and analysis artifacts from system designs, and perform various structural and

dynamic analyses.

Any DSML requires precise specification of the language’s syntax and semantics. Figure 2

provides a simplified view of the design space part of the CyPhyML metamodel. As shown, the

central modeling element in the language is called a DesignContainer. The key attribute of a

design container is ContainerType, which can have one of the following three values:

Compound, Alternative, or Optional. All elements of a compound design container must be part

of the final system design. Alternative design containers are used to capture design choices/trade-

offs. The final assembly will include only one of the choices from alternative design containers.

Optional design containers are similar to alternative, but also allow ‘none’ as an option.

A key element of this language is that design containers can contain child design containers.

This enables construction of a hierarchical AND/OR design space. The concrete elements of the

design are Component and ComponentAssembly (CA). A CA is a system that can only contain

components and child CAs (i.e. subsystems), and represents a system that has been fully

explored, analyzed, and finalized.

As can be seen in Figure 2 components, component assemblies, and design containers have

special elements called Property and Parameter. A property represents a static property of a

component or a component assembly. Properties cannot directly be changed at design time

during design space model construction. Examples of properties are engine’s power rating, or a

driveshaft’s mass. A property of a design container may correspond to a basic property at that

level in the design space or it may be a representative property that is calculated based on the

chosen sub-elements of the design container. Alternatively, CyPhyML parameters can be used to

specify a range of acceptable values. A key element of our tools is that parameters are

9

automatically translated into design constraints to ensure that the values of the parameters

generated for selected configurations lie within the ranges specified.

CyPhyML also supports combining the properties and parameters using ValueFormula. The

ValueFlow connections are used to connect properties and parameters to value formulae. A

simple example could be to calculate mass of the system by adding the masses of its sub-

components. CyPhyML supports two different kinds of value formulae: SimpleFormula and

CustomFormula (not shown in the figure). A SimpleFormula is used for basic arithmetic

operations on incoming ValueFlow properties, while a CustomFormula is used in situations

when a derived property needs to be calculated using complex operations, e.g., Cosine() and

Sqrt().

For the specification of high-level as well as fine-tuned system requirements, CyPhyML also

provides a large number of constraint types to support design constraints arising from component

interactions and due to functional and practical system requirements. We provide details of the

supported constraint types in the next section.

3.3 Design Space Constraint Types
Design Constraints are key elements of Design Spaces. These constraints specify functional

and practical requirements of the design. These could include performance requirements,

parameters, and even constraints that are qualified based on certain conditions. The constraint

types supported by Design Space Tools are presented below. These include Contextual Non-

linear OCL constraints, Visual constraints, Parameter constraints, DecisionGroup constraints,

Property constraints, and Conditional Property constraints.

3.3.1 Contextual Non-linear OCL Constraints

Contextual Non-linear constraints are written textually in OCL format and are associated

with the container it contains in the context with which it must be satisfied. Figure 3 depicts an

example of the Context constraint. This constraint is basically specified to ensure that the IFV

drivetrain is capable enough to accelerate on a 20-degree uphill at an acceleration of 2 m/s
2
.

Figure 3: Context constraint to ensure IFV meets hill climb performance

10

Additionally, the language supports the use of trigonometric functions. The Table 1 below

lists all the mathematical functions that are supported for the OCL constraints.

Table 1: Mathematical functions supported for specifying design constraints

S.

No.

Mathematical

Function
Description

1. sin SINE of a given number in radians

2. cos COSINE of a given number in radians

3. tan TANGENT of a given number in radians

4. asin INVERSE SINE of a given number in radians

5. acos INVERSE COSINE of a given number in radians

6. atan INVERSE TANGENT of a given number in radians

7. sinh HYPERBOLIC SINE of a given number in radians

8. cosh HYPERBOLIC COSINE of a given number in radians

9. tanh
HYPERBOLIC TANGENT of a given number in

radians

10. asinh
INVERST HYPERBOLIC SINE of a given number in

radians

11. acosh
INVERSE HYPERBOLIC COSINE of a given number

in radians

12. atanh
INVERSE HYPERBOLIC TANGENT of a given

number in radians

13. log2 LOGARITHM TO THE BASE 2 of a given number

14. log10 LOGARITHM TO THE BASE 10 of a given number

15. ln
NATURAL LOGARITHM (i.e., to the base ‘e’) of a

given number

16. exp EXPONENTIAL FUNCTION (i.e., e
x
)

17. sqrt SQUARE ROOT of a given number

18. sign
SIGNUM FUNCTION (returns -1 for –ve, 0 for 0, and

+1 for +ve number)

19. rint
MATHEMATICAL ROUND FUNCTION returning

double value

20. abs ABSOLUTE VALUE FUNCTION

3.3.2 Visual Constraints

Visual constraints are helpful in specifying compatibility constraints. It allows the designer

to group Design Element references in AND & OR groups connecting them with implied

relationships. As an example, Figure 4 below shows how Visual constraints can be used to

specify that Non-C7 Engines are only compatible with larger transmission CX31.

11

Figure 4: Visual constraint specifying an engine-transmission compatibility requirement

3.3.3 Parameter Constraints

Parameter constraints are constraints that get automatically generated at runtime depending

on the parametric ranges specified by the user for values of certain parameters of design

elements. For example, the Figure 5 below shows that the sprint_constant parameter was

specified by the user to have a value between 0.75 and 45. The default value was given as 45.

This leads to the automatic creation of a parameter constraint that forces the value of the

parameter spring_constant to satisfy the valid parametric range provided by the user.

Figure 5: Parameter range specification leading to generation of a parameter constraint

12

3.3.4 DecisionGroup constraints

DecisionGroup constraints are a good utility available for the users to be able to succinctly

specify a set of compatibility constraints for selection of design elements. For example, if the

system design contains the use of 4 tires and each tire has a choice from 3 different types, the

user can specify a set of Visual constraints that make sure that if a particular tire type is chosen

for one of the 4 tire choices in a configuration, then the other 3 tires must also be of the same

type. However, this is not sufficient because it must be specified for all available tire types.

Moreover, the user also needs to specify these constraints in reverse directions (i.e., both A  B

and B  A). As such, it quickly becomes an arduous task of specifying several visual constraints

manually. To ease this, DesignSpaceHelper provides an easy way to specify such constraints

where choice (decision) is made for one of the alternative design container must also be chosen

for all other design containers present in a DecisionGroup parent model. For example, Figure 6

below specifies that same tire type (viz. A, B, or C) is chosen for all 4 tire choices (viz.

TireFrontLeft, TireFrontRight, TireRearLeft, TireRearRight).

Figure 6: Decision Group constraint to specify a set of compatibility constraints

3.3.5 Property Constraints

Property constraints are recent additions in the CyPhy language. Given a target value for a

property, a property constraint allows a user to specify if the value for that property in any of the

13

generated configurations should be less than, less than or equal to, equal to, greater than or equal

to, or greater than the target value. Figure 7 below shows an example property constraint.

Figure 7: Property constraint restricting total drivetrain weight

3.3.6 Conditional Property Constraints

Conditional Property constraints are similar to Property constraints but are conditioned on a

given condition. This condition is specified by a Visual constraint using the AND/OR operators

and Implies connections as shown in Figure 4. The condition may represent existence of a group

of components or any arbitrarily complex constraint that must hold for the Conditional Property

constraint to be valid. Once the Property constraint and Visual constraint for the condition are

modeled, the two can be tied by adding a reference of the Property constraint inside the Visual

constraint. This transforms the Property constraint into a Conditional Property constraint as

shown in Figure 8 below.

Figure 8: Conditional property constraint

14

4.0 Overview of Design Space Tools

OpenMETA provides a collection of modeling methods and tools for exploration and

visualization of designs and design spaces, solving complex design constraints, and effective

management of the design spaces and designs. A brief report of these tools is given below.

Examples of tool usage and analyses are given later sections.

4.1 Design Space Exploration Tool (DESERT)
The Design Space Exploration Tool is our key tool for design space exploration. It uses

symbolic constraint satisfaction for design space exploration using Ordered Binary Decision

Diagrams (OBDD-s) [5]. The choices in the design space come from the AND-OR-LEAF tree

structure as well as from the variability of values that can be bound to properties and parameters.

The design space is a cross product of all possible choice outcomes. The process begins with a

binary encoding of the design space, including the AND-OR-LEAF tree and the design

constraints. Each node in the design space tree is assigned a unique integer identifier (ID). These

IDs are then translated into BDD variables such that the encoding reflects the design container

containment semantics. The properties and constraints are also handled symbolically as BDDs

[6]. For handling variable properties, we extended BDDs to Multi-Terminal BDDs (MTBDDs),

which enables values other than 0 and 1 as terminals of BDDs [6]. With this encoding, the

constraint satisfaction amounts to the composition of design constraints and the symbolic design

space representation. The resultant BDD represents the pruned design space. The symbolic

representation has been proven to handle very large design spaces consisting of up to 10
80

 design

configurations [6].

Figure 9: Design Space Exploration Tool (DESERT)

The key elements of DESERT are shown in Figure 9. The exploration controls allow the

users to manage constraints and enable them to selectively apply them to explore design spaces.

The number of viable constraints may reduce or increase as new constraints are applied or

15

reverted respectively. It also permits grouping constraints using their types and domains for

selective constraint application. Further, design elements can also be selected to be included in

all configurations.

The right-hand side of Figure 9 shows the configurations in a tree view. The left panel lists

the configurations and the right panel shows the corresponding design space tree with selection

frequency for each design element. Users can select configurations and corresponding design

elements are highlighted. Users can also select a particular alternative element and corresponding

configurations on the left become checked. The selected configurations can be exported back to

design space.

As shown in Figure 9, the main panel of the Design Space Exploration Tool shows the list of

constraints defined in design space model. Here are brief descriptions of the key buttons on the

tool:

 Edit: Edit the expression of the checked constraint. Valid function list is provided.

 Validate: Check the validity of all the constraints. If there is any error, the error

information will be shown.

 Save: Save all the changes of the constraints back into model.

 Restart: Goes to initial state when no constraints were applied.

 Apply: Apply the checked constraint(s) to design space.

 ApplyAll: Apply all constraints to design space.

 View/Select: This can be used to down-select certain components. This is useful when we

know that we must certain components for some of the choices in the design space. This can

greatly reduce number of configurations that needs to be evaluated.

 Show Cfgs: The generated configurations are displayed.

 Close: Exit the DesignSpaceHelper tool.

The constraints can be applied incrementally. The “Go back” and “Go forward” buttons can

be used to navigate backward or forward between design space results from applied constraints.

Moreover, the bottom panel shows various constraint-filters available for the constraints

listed in the top panel. In the models, users can specify a constraint domain for all constraints.

Additionally, the constraints have their types as one of the domains already listed. As such, a

constraint can have more than one domain. Using these domains, the constraints are grouped and

the filters are provided so that user can choose to selectively apply constraints belonging to the

domains of interest.

Furthermore, in the right side of Figure 9, the dialog shows the list of generated

configurations by applying the constraints from previous step. The right panel shows the

hierarchical (tree) view of the design space. A user can click on the configuration and see all

selected components highlighted. For example, in Figure 9, the configuration 1 is selected. As

soon as this configuration is selected, the components that form this configuration in the design

space tree are highlighted in bold face. This dialog also allows users to select key options that

they want in all of the exported configurations. Checking appropriate checkboxes in the right

hand side design tree completes this step. When options are selected, the appropriate

configurations are automatically selected in the left side panel. The default behavior is to select

only those configurations (intersection) that include all of the chosen options in the design tree.

16

However, when multiple design options of a single Alternative container are chosen, all

configurations that include any of the selected options are selected (union). The dialog also

contains several command buttons, which work as follows:

 Export Selected: Export the selected configuration(s).

 Export All: Exports all configurations.

 Return to Constraints: Goes back to the prior constraint dialog (shown on the left side in

Figure 9).

 Return to CyPhy: Closes all dialogs and goes back to GME.

The selected configurations are exported as Configurations With Constraints (CWC) models

and placed in a folder of type Configurations in the top-level design space for which they were

generated. A CWC model stores the references of the selected components in the configuration

and references to the constraints that were applied to arrive at these configurations. Additionally,

it contains a reference to the Design Space for which the configurations were generated. These

are useful aids in traceability of the generated configuration.

It is important to know that a CWC model contains the references to design elements of the

design space without any connections or hierarchy. This is because, for any realistic design

space, there are thousands of possible configurations at the static analysis stage. Using fully

elaborated models can quickly deplete all available system memory. Another tool, described in

the next section, called Design Space Component Assembly Exporter (CAExporter), is used to

fully elaborate chosen configurations (CWC models). A fully elaborated ComponentAssembly

will include all of the connections between components and subsystems and preserves the

hierarchy of the design space.

4.2 Design Space Component Assembly Exporter (CAExporter)
The DESERT process exports “configurations”, each one representing a set of decisions

encapsulating a feasible design point. As mentioned in previous section, these configurations

contain references to the design elements of the design space without any connections or

assembly hierarchy. The reason for this is that a large design space may contain hundreds, even

thousands, of design configurations that need to be further investigated to analyze their

usefulness. Elaborating all of these design configurations in a fully-specified form (with

connections and hierarchy) can quickly consume all available system memory. Hence, we have

created a separate tool to convert the design configurations generated by DESERT to their fully-

specified form. We can also use this tool to convert design configurations one-by-one, run

through system analysis, and keep/discard them depending upon their usefulness. This is useful

way to deal with system memory constraints. This is also the way the Master Interpreter (MI), as

described in later sections, uses the design space tools in an automated manner.

The tool can be used to convert a single Configuration With Constraints (CWC) model, or a

group of CWC configuration models, or even all CWC models contained in a Configurations

folder depending what is selected prior to invoking the tool. The Figure 10 below shows a group

of exported CWC models for a design space.

17

Figure 10: Sample exported design configurations

Once a configuration (or a group of configurations) is selected and CAExporter is invoked, it

creates a fully-specified assembly model for the chosen configuration. This fully-specified

component assembly includes the full hierarchy of the models as well as all appropriate

connections between components and sub-systems. At the same time, the tool also creates

references of the generated component assembly models and places them next to the CWC

models that were used for generating them and connects them so that the user can easily navigate

to the corresponding generated component assembly from the configuration for which it was

generated. As an example, the Figure 11 below shows the updated Configurations folder that

now includes references to the corresponding generated component assemblies.

18

Figure 11: Design configurations converted to component assemblies

These exported designs represent the pruned sub-set of all possible designs that satisfies the

design-time constraints. User can use other types of analysis tools provided in OpenMETA to

verify suitability of the designs and further prune/rank-order these configurations.

4.3 Design Space Manipulation Tool (DSRefactorer)
When a design space is being constructed, a user often needs to change design space

elements. For example, when multiple vendors of a component become available, the static

component in the design space could be replaced with an Alternative design container with

multiple choices for the component. Another example could be when a sub-system has been

explored and finalized; it could be replaced with a component assembly. Similarly, there are a

number of use-cases where the user needs to manipulate the design space elements in order to

update the design space. Manual manipulation is doable, but requires a lot of unnecessary tasks

like recreating ports in parent/child design elements, redrawing connections, etc. Furthermore,

this is also susceptible to errors when done manually. The Design Space Manipulation Tool

(DSRefactorer) helps avoiding these errors and remarkably increasing design efficiency by

automatic all of these tasks.

Additionally, after the initial Design Space Exploration (DSE) has been completed, the

generated configurations are subjected to dynamic analyses for evaluation against the secondary

requirements. The result of these detailed system analyses in terms of valid design selections and

reformulations must be incorporated into the original design space, which must be re-explored to

generate a new set of valid design configurations. This iterative nature of the design process with

strong bidirectional coupling between design activities and system analysis and verification is a

key requirement for CPS design. This necessitates re-working the original design space in

19

various ways, where the Design Space Manipulation tools becomes highly useful in automating

the various design space manipulation tasks as described below.

The main application of this tool is for converting existing components, component

assemblies, or design containers into a new design container, or component assembly that can

now include the new parts in it. In this process, a user first selects a set of components,

component assemblies, or design containers and then invokes DSRefactorer. The tool will create

new design elements depending on what was selected for refactoring. If more than one option is

available, then the user is presented with a dialog to make the choice and then appropriate

refactoring will be carried out according to user’s choice. The tool will perform the refactoring

while preserving (or creating where needed) all connections and ports. It also maintains the

overall hierarchical structure of the design space while manipulating its constituent parts

according to user choices. Moreover, the tool also intelligently utilizes contextual information of

where the manipulated design space element resides within the design space and what type it is

to determine the set of refactoring actions that are applicable.

Below is a summary of what options are applied or choices are presented to the user

depending on the context of the design elements chosen for which the refactoring was applied.

For brevity the Table 2 below uses the following acronyms: Component (CO), Component

Assembly (CA), Design Element (DE), Design Space (DS), Design Container of Compound type

(DCC), Design Container of Alternative type (DCA), Design Container of Optional type (DCO),

Component Reference (COR), and Root Folder (RF).

Table 2: Use-cases of Design Space Manipulation

Use-case

Name
(Abbrevi

ation of the

refactoring

use-case)

Conte

xt
(where

the

refactorin

g was

invoked

from, i.e.

inside

which

design

element)

Selection
(what was the

refactoring invoked

on, i.e. the selected

design elements

before invoking the

refactorer)

Action
(how the selected elements were

refactored)

InCA.0 CA None No dialog shown; New DS created (as a

DCC) under RF

InCA.1.

CA

CA Single CA Dialog shown with choices (a) Extract

elements of CA (b) Convert CA to a new CA

(c) Convert CA to a new DCC

InCA.1.

COR

CA Single COR Dialog shown with choices (a) Convert

CO to a new CA (b) Convert CO to a new

DCC

20

InCA.>1

.COR

CA Combination of

CAs and CORs

No dialog shown; New child CA inside

current CA (parent) created; Child CA

contains all selected CAs and/or CORs;

Additional ports created for connection to

objects in parent CA

InDC.0 DC None No action; Usage information shown

InDC.1.

CA

DC Single CA Same as InCA.1.CA

InDC.1.

COR

DC Single COR Same as InCA.1.COR

InDC.1.

DCC.0.DC

DC Single DCC (not

containing any DC)

Dialog shown with choices (a) Extract

elements of selected DC (b) Convert selected

DC to a new DCA (c) Convert selected DC

to a new CA

InDC.1.

DCC.>1.DC

DC Single DCC (that

also contains a DC)

Dialog shown with choices (a) Extract

elements of selected DC (b) Convert selected

to a new DCA

InDC.1.

DCA

DC Single DCA No dialog shown; New DCA created with

selected DCA placed inside as child

InDC.1.

DCO.1.DE

DC Single DCO

containing only 1

DE

Dialog shown with choices (a) Convert

DCO into mandatory (i.e. extract its

contained DE out), (b) Convert DCO to a

DCA

InDC.1.

DCO.>1.DE

DC Single DCO

containing > 1 DE

Same as InDC.1.DCA

InDC.1.

CA

DC Single CA Dialog shown with choices (a) Convert

selected CA to a new DCA with selected CA

in it (b) Convert selected CA to a new CA

with selected CA in it

InDC.1.

COR

DC Single COR Dialog shown with choices (a) Convert

selected COR to a new DCA with selected

COR in it (b) Convert selected COR to a new

CA with selected CA in it

InDC.>1

.DE.0.CA.0.

COR

DC >1 DE selected,

none of which is a

DC

No dialog shown; New DCA created with

selected DEs in it

InDC.>1

.DE.>0.CA.

or.>0.COR

DC >1 DE selected,

one of which is

either a CA or a

COR

Dialog shown with choices (a) Convert to

a new DC (with selected DEs in it), (b)

Convert to a new CA (with selected DEs in

it)

21

The Design Space Manipulation Tool is very useful for the iterative design process in

OpenMETA. In conjunction with the Design Space Refinement Tool (described in the next

section), it enables users to perform continuous design and analysis in an integrated and efficient

manner allowing users to complete the feedback loop. This helps with evolving the design space

as the system requirements, resources change, and as more analysis results become available.

4.4 Design Space Refinement Tool (DSRefiner)
One of the critical requirements of Design Space exploration and configuration generation is

the capability to perform coarse-grained exploration and constraint satisfaction on some parts of

the design space and when satisfactory configurations have been generated, do deeper refinement

of those parts on the selected results. Such a capability is provided by the Design Space

Refinement Tool.

If a user endeavors to completely specify the entire design space down to individual nuts and

bolts, not only does the design space becomes unmanageable, but the analysis tools of varying

capabilities are difficult, cumbersome, and time-consuming to apply. It is even possible that the

design space becomes so huge that it allows for generation of billions of configurations some of

which only differ in a very small way such as color of the dashboard meter! Even if the user

manages to reduce the number of configurations by using an appropriately chosen set of design

constraints, using all the analysis tools (for all domains we need to analyze such as CAD,

Thermal, Electrical, etc.) at such a detailed level becomes highly arduous and time-consuming.

As such, we need to be able to specify design space at a level of detail that we are

comfortable reasoning with. As there are constraints that are applicable at this level itself, it is

desirable to make use of them and eliminate huge chunks of design space that are clearly

infeasible. User then proceeds with generation of constraints at this coarser-level of design space.

It is important to note that it is not necessary to specify all parts of the design space at the coarser

level and it all depends on the level of detail for each part of the design space that user is

comfortable reasoning with and have analysis tools available. The next step is, of course, to use

the generated configurations and run various static and dynamics analysis. Once the analysis is

over, a few configurations are down-selected that satisfy all static and dynamics design

constraints.

This is the point where the Design Space Refinement Tool can be invoked on a set of

selected design configurations (CWC models generated by the Design Space Exploration Tool).

The design space refinement tool will take these selected design configurations and convert them

into a refined design space that can be reasoned with in the same way as the original design

space. Even the generated refined design space looks very much like the original design space.

However, the key difference is that any component, component assembly, or design container

that is not part of any of the selected design configurations is not included in the refined design

space. Secondly, the original static constraints are removed and a new visual constraint is added

that directly encodes the configurations that were selected for design refinement. The reason for

this is that the initial configurations were selected only after a detailed constraint satisfaction and

dynamics analysis of the original coarse-level design space and there is no need for re-doing that

work.

22

Note that for all components which are still part of the refined design space, all of their

connections, ports, and properties are preserved in the generated refined design space. In fact, if

Design Space Exploration Tool is invoked again on the refined design space, the configurations

generated are exactly the same as those that were selected for refinement from original design

space – with same look and behavior!

The new refined design space is leaner and contains a direct representation of the originally

selected design configurations. However, as it is still a design space, the user can freely refine

and expand this design space as different parts of the design space are now included or some

parts of the design space are further elaborated into greater detail. As described in the previous

section, the Design Space Manipulation Tool becomes very useful here to convert existing

components, component assemblies, or design containers into a new design container that can

now include new parts in it.

Below we provide an example to illustrate the design space refinement process. Figure 12

shows the top-level view of a sample Infantry Fighting Vehicle (IFV) drivetrain design space.

Figure 12: Top-level view of example design space for IFV drivetrain

When Design Space Helper tool is invoked on this design space, the tree viewer of the

configurations shows that there are a total five configurations that satisfy all of the design

constraints that were specified in the design space. Figure 13 shows the tree viewer of the tool. It

can be seen in Figure 13 that both VU_ISG_V2 and VU_ISG_V3 are used in some of these five

configurations. Also, both transfer cases are used, viz. 455 and 484.

23

Figure 13: Design configurations for example IFV design space in a tree-viewer

When all of the five configurations are exported, each of them is then elaborated from CWC

models (containing only design element references with no connections or hierarchy) to fully-

specified component assemblies with hierarchy and connections. Figure 14 shows the five

generated configuration models and a fully-specified component assembly corresponding to

configuration #3.

24

Figure 14: Generated configurations (with component assembly) for example IFV design space

Next the detailed analysis is performed for these fully-specified component assemblies. Let’s

assume that after analysis, configurations #2 and #3 were selected. Next, we select the cfg2 and

cfg3 CWC configuration models in GME and invoke the Design Space Refinement Tool to

generate a new refined design space that includes only these two design configurations. Figure

15 shows the top-level view of the refined design space. Notice that this looks exactly like the

original design space, except that a new reference to the original design space and a new visual

constraint is added to the refined design space.

Figure 15: Refined design space for chosen configurations of IFV design space

However, when we look deeper into the ISG design alternatives in the refined design space

(see Figure 16), we can see that now it contains only VU_ISG_V3 ISG (and only 455 transfer

case) as the constituent component. The detailed path to ISG container can be seen in the title of

the GME window in the Figure 16.

25

Figure 16: Refined (ISG) design container in refined IFV design space

At this point, user can safely edit the refined design space for further elaboration or

refinement as is normally done during design space modeling. Newer design constraints can also

be added along with this refinement. Moreover, if more alternatives need to be added at the same

level as an existing design element (i.e., a component, a component assembly, or a design

container), then the Design Space Manipulation Tool can be used.

In summary, the Design Space Refinement Tool allows the user to select a subset of

configurations of a design space and generate a refined design space using these configurations.

The refined design space has the exact same hierarchical structure, ports, and connections as are

in the original design space, but omits design elements from the original design space that are not

part of the selected configurations. Further, original design constraints are removed, but a new

visual constraint is added that ensures that when Design Space Exploration Tool is run on the

refined design space, the exact same set of configurations are generated. This avoids repetition of

the analyses that were done in the original design space. Thus, the Design Space Refinement

Tool is highly useful for gradually building design spaces, performing coarser-grained analyses,

and incorporating the results for refining and manipulating the design space.

4.5 Design Space Criticality Meter (DSCriticalityMeter)
The Design Space Criticality Meter is an important tool for informed use of Design Space

Manipulation and Design Space Refinement Tools. During the design space refinement process,

user selects a set of configurations based on the outcome of static and dynamic analysis of all

configurations for further refinement. Using the Design Space Refinement Tool, user converts

the selected configurations into a newly created refined design space. This new refined design

space is leaner and a direct representation of the originally selected design configurations with all

connections, ports, and properties preserved. The newly created refined design space can be

freely refined and expanded for further design space exploration and refinement. Also, the

Design Space Manipulation Tool is used to convert existing components, component assemblies,

or design containers into a new design container that can now include new parts in it. For both of

these tools to be used with greater information, the Design Space Criticality Meter can be used to

26

determine the usefulness of refining or manipulating a particular component, component

assembly, or a design container.

One example of the key criticality metrics that is of immediate help to the designer is the

number of configurations a particular component, component assembly, or a design container

appears in. Depending on the design space, user may choose to refine a design element that is

included in all or some reasonable number of configurations. It is important to note that at this

stage only those design elements will appear in the refined design space that are part of at least

one of the chosen configurations for refinement. In general, design elements appear only in a

subset of all design configurations depending on how many alternatives were designed in the

design space. As such, it is important to know how many configurations include a particular

design element. This is even more important in vendor selections and reliability analysis. This

metric is also a parameter of the overall design complexity of the design space.

The Design Space Complexity Meter currently shows the number of configurations for all

components, component assemblies, and design containers. This is shown as an attribute of

design elements called NumAssociatedConfigs. In the future, more metrics related to the

complexity of design elements can also be appended. The criticality metric is illustrated in

Figure 17. It shows that ISG-1 wasn’t selected in any design configurations, whereas ISG-2 was

selected in 3 of 5 design configurations. This example is for original IFV drivetrain design space.

Figure 17: Criticality metrics generated by Design Space Criticality Meter

Also, when invoked, the tool calculates these numbers for all design spaces that are in the

GME model. The tool internally runs the Design Space Exploration Tool and applies ALL

constraints of design space and updates the NumAssociatedConfigs attribute for all of the design

elements in the design space. The tool runs in batch mode such that NO user selection dialogs are

presented (e.g. to select only a few constraints in a design space).

4.6 Supporting META Tools
Several other interpreter components exist in OpenMETA that are associated with DSE. The

Component Authoring Tool provides importing capability from various domains (e.g. CAD,

Modelica) into OpenMETA tools. After the component library is populated the Component

Library Manager helps to discover and insert different instances of the same component types

into an alternative design container. Once components and subsystems are composed in a design

space and design configurations are exported the Master Interpreter automates the translation of

27

all designs into executable domain specific models. After the model transformations, it transfers

the generated executable models (analysis packages) to the Job Manager, which executes the

analyses using domain specific tools, e.g., Dymola, Creo, etc.

28

5.0 Iterative Design Process in META

CPS design is a major integration problem because of their inherent complexity and

unexpected component interactions. As shown in [7], the design process must allow for the

continuous existence of an executable system, with a concrete architecture, well-defined

interfaces, and an executable form. This allows designers to analyze their designs earlier during

the design process and obtain useful feedback. This facilitates less error-prone designs, saved

manpower, and manageable design spaces.

To enable the iterative design process for CPS-s, OpenMETA supports three key design

flows. As shown in Figure 18, the first design flow is a classic top-down design space

construction. In this case, the user begins with the top-level design container and adds design

elements to it and constraints on those elements according to design requirements. A second

design flow involves starting from a single seed design. This design flow is highly applicable for

the real-world design use-cases, where there are existing designs and design processes. Starting

from the seed design, the user extends the design space (using the tools mentioned above) to add

alternatives in place of concrete design elements such as components or component assemblies.

In this fashion, the user grows a larger design space from that seed design. Another supported

design flow is when the user does not have concrete design elements or assemblies to work with.

In this case, the user can use surrogate equations in place of design space elements. The design

space can still be explored and analyzed. These surrogates can then be replaced with more

accurate models as they become available. Surrogates are also helpful for performing coarse-

grained analyses, the results of which can be used to refine the design space.

29

Figure 18: Iterative design process in META

It is important to note that while there are several design flows that users can exercise in

OpenMETA, all of the design space tools, such as DSRefactorer and DSRefiner, are equally

applicable. Different design flows do not eliminate the need to continually evolve design spaces

using a closed-loop integration of design and analysis activities. As shown in Figure 18 and

described previously, OpenMETA provides several supporting tools to build, test, and analyze

design configurations.

30

6.0 Case Study

In this section we present a simplified drive line model as a case study for design space

exploration. Many CAE tools (e.g., CAD, FEA, CFD, and Modelica) have great capabilities to

analyze a design, but creating/extending design in CAE tools often takes significant time, and

invariably requires subject matter expertise. To improve the process, a seed design point needs to

be altered with alternative component instances to evaluate which combination performs better.

We use DSEM tools in OpenMETA to capture architectural alternatives and specify design

constraints, generate configurations that satisfy these constraints, and then apply a set of model

transformations to generate composed executable models for the CAE tools.

Figure 19: Drive-line design space model

Figure 19 shows the design space of a simplified drive line that contains several subsystems.

The architecture and composition of the design space was derived from a single design point

built in Modelica. The design space is extended with additional engine, power take-off module,

transmission, final drives, hydraulic fan, and hydraulic pump alternatives. This leads to a

significantly large design space – 15456 configurations – many of which are not viable due to

design constraints. Figure 20 shows 4. FinalDriveSymmetry constraint ensures that the left and

right drives have the same gear ratios. MinPower and MaxPower constraints assert that the

engine’s nominal power lies between the transmission’s minimum and maximum power ratings.

NoMoreThanOnePumps ensures the design uses no more than one hydraulic pump. Application

of these constraints reduces the viable number of designs to 47 – a manageable set that users can

analyze.

31

Figure 20: Constraints used in the drive-line design space

Configurations are composed across various domains, but here we briefly illustrate the

composed Modelica models, simulation execution, and visualization of results for completeness.

Please note that further details on model composition, simulation execution and visualization are

presented in other chapters of the META final report.

We analyzed the behavior of the selected 47 configurations using the Modelica simulation

tools and collected results are shown in Figure 21. It shows two visualization capabilities of the

Project Analyzer (a) parallel axis plot and (b) multi-attribute decision analysis. The parallel axis

plot has vertical axis for each variable of interest from the analysis and each colored plot

represents a design configuration. The requirement objective and threshold values are shown

with green and red colors respectively. The multi-attribute decision analysis widget shows an

ordered list of configurations based on the user’s specified weighting of each variable of interest.

This is an interactive widget that helps to quickly identify differences between designs and

choose the best design based on user preferences.

Figure 21: Project Analyzer showing parallel axis plot and multi-attribute decision analysis

32

7.0 Conclusion

Cyber-physical systems are tremendously hard to design and analyze due to continuous

interaction between different domains of the system as well as the use of cyber infrastructure to

facilitate information flows between system components. This becomes even more challenging

when the designer is faced with ever-changing system requirements and vendor management.

Consequently, designs are never fixed in stone and are subject to continual development.

However, adapting designs involves a huge penalty in terms of time and resources to make sure

that the design meets system constraints as well as satisfies the new requirements for which the

system design is being adapted. This is where the strength of OpenMETA tool chain for

constraint-driven design space exploration and manipulation is highly useful. The variety of

design space tools discussed in the sections above provide for a complete tool-suite to enable the

iterative design process of cyber-physical systems. This not only enables highly efficient design

process, but lends the designs themselves to be highly analyzable. Furthermore, the additional

supporting tools, as discussed above, provide deeper insights into the designs and provide full

support for their evaluation, ranking, and visualization of key system metrics.

33

8.0 Future Work

In the future, as the opportunity arises, we plan to further extend our tool chain to increase its

capabilities. In particular, we plan on adding:

1. Adding additional design space manipulation tools,

2. Increasing the library of supported design constraints including those that get

automatically generated from specifications and ones that facilitate succinct representations of

existing methods, and

3. Increasing feedback messaging from analysis tools into design space exploration and

manipulation.

34

Bibliography

1. Sztipanovits J.: Composition of cyber-physical systems. In: 14th Annual IEEE Int’l.

Conference and Workshops on the Engineering of Computer-Based Systems (ECBS ’07),

Washington, DC, USA. IEEE Computer Society, 2007, pp. 3–6.

2. Lee E.: Cyber physical systems: Design challenges. In: Proc. of the 11th IEEE Int’l.

Symposium on Object Oriented Real-Time Distributed Computing (ISORC ’08), May 2008,

pp. 363–369.

3. Sztipanovits J., Karsai G.: Model-Integrated Computing. In: IEEE Computer 30, 1997, pp.

110-112.

4. Wrenn R., Nagel A., Owens R., Yao D., Neema H., Shi F., Smyth K., van Buskirk C., Porter

J., Bapty T., Neema S., Sztipanovits J., Ceisel J., Mavris D.: Towards Automated Exploration

and Assembly of Vehicle Design Models. In: ASME 2012 International Design Engineering

Technical Conferences and Computers and Information in Engineering Conference (IDETC

'2012), Chicago, Illinois, USA, August 12-15, 2012. Volume 2: 32nd Computers and

Information in Engineering Conference, Parts A and B, pp. 1143-1152.

doi:10.1115/DETC2012-71464.

5. Bryant R.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions

on Computers, vol. C-35, pp. 677-691, 1986.

6. Neema S., Sztipanovits J., Karsai K.: Constraint-based design-space exploration and model

synthesis. In EMSOFT, 2003, pp. 290–305.

7. Karsai, G., Sztipanovits, J.: Model-Integrated Development of Cyber-Physical Systems. In:

Proceedings of the 6th IFIP WG 10.2 international workshop on Software Technologies for

Embedded and Ubiquitous Systems, October 01-03, 2008, Anacarpi, Capri Island, Italy. doi:

10.1007/978-3-540-87785-1_5.

8. DARPA Adaptive Vehicle Make Program.

www.darpa.mil/Our_Work/TTO/Programs/Adaptive_Vehicle_Make__(AVM).aspx.

9. Lattmann Z., Nagel A., Scott J., Smith K., van Buskirk C., Porter J., Neema S., Bapty T.,

Sztipanovits J., Ceisel J., Mavris D.: Towards Automated Evaluation of Vehicle Dynamics in

System-Level Designs. In: ASME 2012 International Design Engineering Technical

Conferences and Computers and Information in Engineering Conference. Volume 2: 32nd

Computers and Information in Engineering Conference, Parts A and B, Chicago, Illinois,

USA, August 12–15, 2012, pp. 1131-1141. doi:10.1115/DETC2012-71378.

10. Manolios P., Subramanian, G., Vroon D.: Automating component-based system assembly. In:

ISSTA 2007, pp. 61-72.

11. Gries M.: Methods for evaluating and covering the design space during early design

development. In: Integration, 38(2):131{183, 2004.

http://www.darpa.mil/Our_Work/TTO/Programs/Adaptive_Vehicle_Make__(AVM).aspx

