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1.0 Summary 

 

Cyber-Physical Systems (CPS) [1] are engineered systems that require tight interaction 

between physical and computational components. Designing a CPS is highly challenging [2] 

because these systems are inherently complex, need significant effort to describe and evaluate a 

vast set of cross-disciplinary interactions, and require seamless meshing of physical elements 

with corresponding software artifacts. Moreover, a large set of architectural and compositional 

alternatives must be systematically explored and evaluated in the context of a highly constrained 

design space. The constraints imposed on the selection of alternatives are derived from the 

system’s functional, performance, dimensional, physical, and economical objectives. 

Furthermore, the design process of these systems is highly iterative and requires continuous 

integration of design generation with design selection and manipulation supported by design 

analyses. 

To enable the iterative design process for CPS-s, we have developed a design tool chain, 

OpenMETA [4] [9], built around a Domain-Specific Modeling Language (DSML) [3], called the 

Cyber-Physical Modeling Language (CyPhyML). In this report, we describe the elements of 

OpenMETA that deal with Design Space Exploration and Manipulation (DSEM) for CPS-s. 

These parts of the tool chain collectively provide modeling methods and tools for exploration 

and visualization of designs and design spaces, solving complex design constraints, and effective 

management of the design spaces and designs. 

In particular, the report will cover the key language aspects dealing with design space 

construction and specification of design constraints arising from component interactions and due 

to functional and practical system requirements. Also, we discuss our approach to effectively 

manage large-scale design spaces that are pervasive in META design problems. We provide 

details of key design space tools that were developed in META to support the above process. We 

also describe the iterative design process that is crucial for designing complex real-world 

systems and highlight how META’s design space tools support it. Further, we discuss how 

designs are evaluated and how design space is evolved using the analysis results with the help of 

design space tools. We also present a detailed case study to exemplify our approach and usage of 

the design space tools. 

1.1 Overview 
 

Design Space Exploration for complex CPS cannot be realized as a closed form analytical 

search procedure and requires multiple techniques, at multiple abstractions and fidelity, and 

involves complex iterations. Existing engineering practice follows the classical systems 

engineering design process model, which includes requirements and design iterations, with 

system analysis and controls development going in parallel. However, in the context of large-

scale CPS-s, the re-design cycles require tremendous amount of work, time, and resources. This 

is further exacerbated by pushing the verification and validation to the testing phase. Not only 

does that introduce errors much later in the design phase, it also lends the design process itself 
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highly inflexible to changes in requirements and implementation technologies, which are 

commonplace in the modern continually evolving globally connected world. What is needed is a 

design process that is not only able to easily adapt changes in the design requirements, but is also 

tied to an integrated testing framework that allows for continual design verification and evolution 

of the design space itself to produce better and faster designs. 

The OpenMETA tool chain provides unique capabilities in this respect and incorporates a 

comprehensive suite of methods for design space exploration such as discrete combinatorial 

design space exploration, parametric design analysis, simulation based design metric evaluation, 

and dashboard for design space metric visualization. 

1.2 Goal 
 

Traditional design processes employ the waterfall approach where the requirements 

definition and design phase precedes the testing and evaluation of designs. The main problems 

with the traditional approach are: 

 Designs developed are purposed for use of a particular use-case and need substantial re-

work if the design needs to be adapted for other applications. 

 Problems are discovered much later during the system integration phase and so the 

optimal system architecture and components may not be determined earlier in the design process. 

 Requirements often change during the design process, which often requires re-designing 

the systems. 

Our goal for design process in META is to provide a comprehensive set of tools that enable 

easier design exploration and adaptation, support integrated testing and evaluation, and enable 

near-continuous design evolution for updates in requirements as well as using feedback from 

design analyses. 

1.3 Summary of Approach 
 

Designing of complex cyber-physical systems is not a straightforward process from 

requirements specification to a full design; rather it is an iterative process where the generation 

of design configurations must interplay with design requirements as well as design analyses. 

Our approach to solve this problem is to provide tools for designers to effectively explore the 

design spaces and manage design requirements that may change from day-to-day. Our 

architecture design language, Cyber-Physical Modeling Language (or CyPhyML for short) 

allows for modeling design spaces and specifying design constraints. Our design space 

exploration tool allows for systematic exploration of design spaces to prune design 

configurations that do not satisfy design constraints. This tool allows for the selective application 

of design constraints to provide detailed feedback of design constraints on validity of design 

choices in the design spaces. Further, we provide a set of tools to manipulate the designs and 

design spaces in various ways to help designers to evolve the design spaces as the requirements 
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change. Also, we provide integrated testing framework for analyzing and visualizing designs and 

various tools to incorporate the results of those analyses to adapt the design spaces. 
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2.0 Introduction 

2.1 Design Space Exploration of Cyber Physical Systems 
 

Cyber-Physical Systems (CPS) [1] are systems that require tight interaction between physical 

and computational components. These systems span several engineering domains such as 

mechanical, electrical, thermal, and cyber. CPS design is highly challenging [2] because these 

systems are inherently complex, need significant effort to describe and evaluate a vast set of 

cross-domain interactions, and require seamless meshing of physical elements with 

corresponding software artifacts. CPS-s involve a large set, or design space, of architectural and 

compositional alternatives that must be systematically explored and evaluated. The design spaces 

are formulated with these alternatives and design constraints that limit the selection of design 

elements to those that satisfy them. These basic constraints are derived from the system’s 

functional (e.g., gas, electric, or hybrid drivetrain), performance (e.g., minimum torque of 

engine), dimensional (e.g., maximum height or capacity), physical (e.g., weight, join structures), 

and economical (e.g. cost) objectives. 

Good system design must further consider several factors such as manufacturability, stability, 

complexity, reliability, risks, time-to-market, etc. However, we consider these factors as 

secondary, coming after the basic set of constraints is satisfied. The discrete selection of 

compositional and architectural alternatives based on these constraints form the initial Design 

Space Exploration (DSE). The generated configurations are subjected to dynamic analyses for 

evaluation against the secondary requirements. The result of these detailed system analyses in 

terms of valid design selections and reformulations must be incorporated into the original design 

space, which must be re-explored to generate a new set of valid design configurations. This 

iterative nature of the design process with strong bidirectional coupling between design activities 

and system analysis and verification is a key requirement for CPS design. 

2.2 Design Space Exploration in META Tool chain 
 

To enable the iterative design process for CPs-s, we have developed a design tool chain, that 

we call OpenMETA [4] [9] (see Figure 1), built around a Domain-Specific Modeling Language 

(DSML) [3], called the Cyber-Physical Modeling Language (CyPhyML). The CyPhyML 

captures integration interfaces of system components across multiple design domains (e.g., 

Cyber, CAD, and FEA) as well as generic assembly rules given in terms of compositional and 

architectural alternatives and hard design constraints for the final assembly. OpenMETA 

supports multi-level and multi-fidelity exploration of system-level architectural and parametric 

tradeoffs. These tools facilitate the iterative design process by integrating formal qualitative 

reasoning methods, DSEM, and automated dynamics and structural analyses of designs. In this 

paper, we focus only on tools that support design space exploration and manipulation for CPS-s. 
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Figure 1: Design Space Tools in OpenMETA 
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3.0 Design Space Modeling 

3.1 Design Space Concepts 
In this section we provide definitions of some of the key concepts related to design space 

exploration and manipulation: 

Component: A Component is a self-contained, reusable entity that can be used in a design. A 

component can be anything from an electrical resistor, a spring, or a transmission. Components 

are the basic building blocks of a design space. 

Component Model: A Component Model captures everything that we know about a 

component. Component models are self-contained and can include schematic, geometric, 

physical, and behavioral models of the component. Additionally, component models can provide 

data sheet and interface information. As the component models are self-contained, they are 

reusable across all META designs. 

Property: A property is a way to capture fixed values of characteristics of a component. 

Examples of properties could be length of a drive shaft or the maximum output power of a 

transmission. 

Parameter: A parameter is similar to a property except that the value of a parameter can be 

varied by the designers. Examples of parameters could be length of a spring, or allowable torque 

range of a transmission. 

Component Assembly: A Component Assembly is a fully specified design or part of a design 

including all the components, their connections with other components in the assembly, and the 

value of their properties and parameters. Final designs in META are Component Assemblies. 

Design Space: The Design Space allows the user to model optionality and composition of 

multiple components and component assemblies. 

Design Element: The key objects that a design space is composed of are Design Elements. 

Design Element could also be a child/sub Design Space. Other types of Design Elements are 

components, component assemblies, and design containers. 

Design Container: Design Container represents a partially specified part of the design or sub-

system and contains a set of components and constraints. There are three types of design 

containers: Compound, Alternative, or Optional. All elements of a compound design container 

must be part of the final system design. Alternative design containers are used to capture design 

choices/trade-offs. The final assembly will include only one of the choices from alternative 

design containers. Optional design containers are similar to alternative, but also allow ‘none’ as 

an option. 

Design Constraint: Design Constraints are used to specify requirements of the design that are 

not different from hierarchical composition of components. Examples of design constraints could 

be the minimum power requirement of an engine, or maximum speed of a vehicle. Also, these 

constraints can specify compatibility restrictions such as a component cannot be chosen if 

another component is part of the design. We discuss different types of design constraints 

supported in META in the later section. 

Seed Design: Seed designs are used to integrate a design flow in META that starts with an 

existing system design. This is a highly practical approach as industry typically has a design that 
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is currently in use and needs to start from it instead from scratch and work toward improving it 

or make it amenable to changing design requirements. 

Design Flow: A design flow refers to ways in which designers proceed with designing 

systems. As mentioned above, one of the design flows could be to start from a seed design. Other 

example would be to design in a hierarchical top-down method that start from designing the 

system as a whole first and then populating it with sub-systems and so on. 

Design Space Refactoring/Manipulation: This refers to modifying a Design Element in a 

Design Space. The tools in META allow modifying design elements in various ways and provide 

refactoring choices based on contextual information of the type and location of the Design 

Element. 

Design Space Refinement: This refers to the process of selecting a set of well-tested and 

verified designs and creating a new design space from these designs. This is used by engineers to 

finalize parts of the designs as well as to refine/explore them further. The process helps designers 

to reduce design space complexity and effectively manage design spaces. 

3.2 Design Space Modeling Language 
The CyPyML uses Model-Integrated Computing (MIC) [3] techniques to support design-time 

integration of vast number of system-level design aspects and methods, and the automated 

exploration and manipulation of design spaces. Model-Integrated Computing (MIC) is the core 

technology on which CyPhyML and its tools are built. MIC focuses on the formal representation, 

composition, analysis, and manipulation of models during the design process. It places models in 

the center of the entire life-cycle of systems, including specification, design, development, 

verification, integration, and maintenance. The Generic Modeling Environment (GME) is a 

meta-programmable toolkit that enables definition and use of Domain-Specific Modeling 

Languages (DSMLs) [3] such as CyPhyML. In MIC, DSMLs are configured through 

metamodels, expressed as UML class diagrams, specifying the modeling paradigm of the 

application domain. Metamodels characterize the abstract syntax of the DSML, defining which 

objects (i.e. boxes, connections, and attributes) are permissible in the language. Simplistically, 

DSML is a schema or data model for all possible models that can be expressed by a language. A 

DSML for finite state machines would consist of states, and transitions, from which any valid 

state machine can be realized. The inherent flexibility and extensibility of GME via metamodels 

make it an ideal platform for CPS design and analysis using CyPhyML. 
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Figure 2: Simplified Metamodel of the Design Space 

CyPhyML captures the concepts of design models in various CPS domains, specifies how 

these concepts are organized and related, and specifies the rules governing their composition. 

OpenMETA consists of a number of model interpreters and analysis tools, which can be used to 

generate system and analysis artifacts from system designs, and perform various structural and 

dynamic analyses. 

Any DSML requires precise specification of the language’s syntax and semantics.  Figure 2 

provides a simplified view of the design space part of the CyPhyML metamodel. As shown, the 

central modeling element in the language is called a DesignContainer. The key attribute of a 

design container is ContainerType, which can have one of the following three values: 

Compound, Alternative, or Optional. All elements of a compound design container must be part 

of the final system design. Alternative design containers are used to capture design choices/trade-

offs. The final assembly will include only one of the choices from alternative design containers. 

Optional design containers are similar to alternative, but also allow ‘none’ as an option. 

A key element of this language is that design containers can contain child design containers. 

This enables construction of a hierarchical AND/OR design space. The concrete elements of the 

design are Component and ComponentAssembly (CA). A CA is a system that can only contain 

components and child CAs (i.e. subsystems), and represents a system that has been fully 

explored, analyzed, and finalized. 

As can be seen in Figure 2 components, component assemblies, and design containers have 

special elements called Property and Parameter. A property represents a static property of a 

component or a component assembly. Properties cannot directly be changed at design time 

during design space model construction. Examples of properties are engine’s power rating, or a 

driveshaft’s mass. A property of a design container may correspond to a basic property at that 

level in the design space or it may be a representative property that is calculated based on the 

chosen sub-elements of the design container. Alternatively, CyPhyML parameters can be used to 

specify a range of acceptable values. A key element of our tools is that parameters are 
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automatically translated into design constraints to ensure that the values of the parameters 

generated for selected configurations lie within the ranges specified. 

CyPhyML also supports combining the properties and parameters using ValueFormula. The 

ValueFlow connections are used to connect properties and parameters to value formulae. A 

simple example could be to calculate mass of the system by adding the masses of its sub-

components. CyPhyML supports two different kinds of value formulae: SimpleFormula and 

CustomFormula (not shown in the figure). A SimpleFormula is used for basic arithmetic 

operations on incoming ValueFlow properties, while a CustomFormula is used in situations 

when a derived property needs to be calculated using complex operations, e.g., Cosine() and 

Sqrt(). 

For the specification of high-level as well as fine-tuned system requirements, CyPhyML also 

provides a large number of constraint types to support design constraints arising from component 

interactions and due to functional and practical system requirements. We provide details of the 

supported constraint types in the next section. 

3.3 Design Space Constraint Types 
Design Constraints are key elements of Design Spaces. These constraints specify functional 

and practical requirements of the design. These could include performance requirements, 

parameters, and even constraints that are qualified based on certain conditions. The constraint 

types supported by Design Space Tools are presented below. These include Contextual Non-

linear OCL constraints, Visual constraints, Parameter constraints, DecisionGroup constraints, 

Property constraints, and Conditional Property constraints. 

3.3.1 Contextual Non-linear OCL Constraints 

Contextual Non-linear constraints are written textually in OCL format and are associated 

with the container it contains in the context with which it must be satisfied.  Figure 3 depicts an 

example of the Context constraint.  This constraint is basically specified to ensure that the IFV 

drivetrain is capable enough to accelerate on a 20-degree uphill at an acceleration of 2 m/s
2
. 

 
Figure 3: Context constraint to ensure IFV meets hill climb performance 
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Additionally, the language supports the use of trigonometric functions. The Table 1 below 

lists all the mathematical functions that are supported for the OCL constraints. 

 
Table 1: Mathematical functions supported for specifying design constraints 

S. 

No. 

Mathematical 

Function 
Description 

1. sin SINE of a given number in radians 

2. cos COSINE of a given number in radians 

3. tan TANGENT of a given number in radians 

4. asin INVERSE SINE of a given number in radians 

5. acos INVERSE COSINE of a given number in radians 

6. atan INVERSE TANGENT of a given number in radians 

7. sinh HYPERBOLIC SINE of a given number in radians 

8. cosh HYPERBOLIC COSINE of a given number in radians 

9. tanh 
HYPERBOLIC TANGENT of a given number in 

radians 

10. asinh 
INVERST HYPERBOLIC SINE of a given number in 

radians 

11. acosh 
INVERSE HYPERBOLIC COSINE of a given number 

in radians 

12. atanh 
INVERSE HYPERBOLIC TANGENT of a given 

number in radians 

13. log2 LOGARITHM TO THE BASE 2 of a given number 

14. log10 LOGARITHM TO THE BASE 10 of a given number 

15. ln 
NATURAL LOGARITHM (i.e., to the base ‘e’) of a 

given number 

16. exp EXPONENTIAL FUNCTION (i.e., e
x
) 

17. sqrt SQUARE ROOT of a given number 

18. sign 
SIGNUM FUNCTION (returns -1 for –ve, 0 for 0, and 

+1 for +ve number) 

19. rint 
MATHEMATICAL ROUND FUNCTION returning 

double value 

20. abs ABSOLUTE VALUE FUNCTION 

 

3.3.2 Visual Constraints 

Visual constraints are helpful in specifying compatibility constraints.  It allows the designer 

to group Design Element references in AND & OR groups connecting them with implied 

relationships. As an example, Figure 4 below shows how Visual constraints can be used to 

specify that Non-C7 Engines are only compatible with larger transmission CX31. 
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Figure 4: Visual constraint specifying an engine-transmission compatibility requirement 

3.3.3 Parameter Constraints 

Parameter constraints are constraints that get automatically generated at runtime depending 

on the parametric ranges specified by the user for values of certain parameters of design 

elements. For example, the Figure 5 below shows that the sprint_constant parameter was 

specified by the user to have a value between 0.75 and 45. The default value was given as 45. 

This leads to the automatic creation of a parameter constraint that forces the value of the 

parameter spring_constant to satisfy the valid parametric range provided by the user. 

 
Figure 5: Parameter range specification leading to generation of a parameter constraint 
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3.3.4 DecisionGroup constraints 

DecisionGroup constraints are a good utility available for the users to be able to succinctly 

specify a set of compatibility constraints for selection of design elements. For example, if the 

system design contains the use of 4 tires and each tire has a choice from 3 different types, the 

user can specify a set of Visual constraints that make sure that if a particular tire type is chosen 

for one of the 4 tire choices in a configuration, then the other 3 tires must also be of the same 

type. However, this is not sufficient because it must be specified for all available tire types. 

Moreover, the user also needs to specify these constraints in reverse directions (i.e., both A  B 

and B  A). As such, it quickly becomes an arduous task of specifying several visual constraints 

manually. To ease this, DesignSpaceHelper provides an easy way to specify such constraints 

where choice (decision) is made for one of the alternative design container must also be chosen 

for all other design containers present in a DecisionGroup parent model. For example, Figure 6 

below specifies that same tire type (viz. A, B, or C) is chosen for all 4 tire choices (viz. 

TireFrontLeft, TireFrontRight, TireRearLeft, TireRearRight). 

 
Figure 6: Decision Group constraint to specify a set of compatibility constraints 

3.3.5 Property Constraints 

Property constraints are recent additions in the CyPhy language. Given a target value for a 

property, a property constraint allows a user to specify if the value for that property in any of the 
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generated configurations should be less than, less than or equal to, equal to, greater than or equal 

to, or greater than the target value. Figure 7 below shows an example property constraint. 

 
Figure 7: Property constraint restricting total drivetrain weight 

 

3.3.6 Conditional Property Constraints 

Conditional Property constraints are similar to Property constraints but are conditioned on a 

given condition. This condition is specified by a Visual constraint using the AND/OR operators 

and Implies connections as shown in Figure 4. The condition may represent existence of a group 

of components or any arbitrarily complex constraint that must hold for the Conditional Property 

constraint to be valid. Once the Property constraint and Visual constraint for the condition are 

modeled, the two can be tied by adding a reference of the Property constraint inside the Visual 

constraint. This transforms the Property constraint into a Conditional Property constraint as 

shown in Figure 8 below. 

 
Figure 8: Conditional property constraint 
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4.0 Overview of Design Space Tools 

OpenMETA provides a collection of modeling methods and tools for exploration and 

visualization of designs and design spaces, solving complex design constraints, and effective 

management of the design spaces and designs. A brief report of these tools is given below. 

Examples of tool usage and analyses are given later sections. 

4.1 Design Space Exploration Tool (DESERT) 
The Design Space Exploration Tool is our key tool for design space exploration. It uses 

symbolic constraint satisfaction for design space exploration using Ordered Binary Decision 

Diagrams (OBDD-s) [5]. The choices in the design space come from the AND-OR-LEAF tree 

structure as well as from the variability of values that can be bound to properties and parameters. 

The design space is a cross product of all possible choice outcomes. The process begins with a 

binary encoding of the design space, including the AND-OR-LEAF tree and the design 

constraints. Each node in the design space tree is assigned a unique integer identifier (ID). These 

IDs are then translated into BDD variables such that the encoding reflects the design container 

containment semantics. The properties and constraints are also handled symbolically as BDDs 

[6]. For handling variable properties, we extended BDDs to Multi-Terminal BDDs (MTBDDs), 

which enables values other than 0 and 1 as terminals of BDDs [6]. With this encoding, the 

constraint satisfaction amounts to the composition of design constraints and the symbolic design 

space representation. The resultant BDD represents the pruned design space. The symbolic 

representation has been proven to handle very large design spaces consisting of up to 10
80

 design 

configurations [6]. 

 

Figure 9: Design Space Exploration Tool (DESERT) 

The key elements of DESERT are shown in Figure 9. The exploration controls allow the 

users to manage constraints and enable them to selectively apply them to explore design spaces. 

The number of viable constraints may reduce or increase as new constraints are applied or 
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reverted respectively. It also permits grouping constraints using their types and domains for 

selective constraint application. Further, design elements can also be selected to be included in 

all configurations. 

The right-hand side of Figure 9 shows the configurations in a tree view. The left panel lists 

the configurations and the right panel shows the corresponding design space tree with selection 

frequency for each design element. Users can select configurations and corresponding design 

elements are highlighted. Users can also select a particular alternative element and corresponding 

configurations on the left become checked. The selected configurations can be exported back to 

design space. 

As shown in Figure 9, the main panel of the Design Space Exploration Tool shows the list of 

constraints defined in design space model. Here are brief descriptions of the key buttons on the 

tool: 

 Edit: Edit the expression of the checked constraint. Valid function list is provided. 

 Validate: Check the validity of all the constraints. If there is any error, the error 

information will be shown. 

 Save: Save all the changes of the constraints back into model. 

 Restart: Goes to initial state when no constraints were applied. 

 Apply: Apply the checked constraint(s) to design space. 

 ApplyAll: Apply all constraints to design space. 

 View/Select: This can be used to down-select certain components. This is useful when we 

know that we must certain components for some of the choices in the design space. This can 

greatly reduce number of configurations that needs to be evaluated. 

 Show Cfgs: The generated configurations are displayed. 

 Close: Exit the DesignSpaceHelper tool. 

The constraints can be applied incrementally. The “Go back” and “Go forward” buttons can 

be used to navigate backward or forward between design space results from applied constraints. 

Moreover, the bottom panel shows various constraint-filters available for the constraints 

listed in the top panel. In the models, users can specify a constraint domain for all constraints. 

Additionally, the constraints have their types as one of the domains already listed. As such, a 

constraint can have more than one domain. Using these domains, the constraints are grouped and 

the filters are provided so that user can choose to selectively apply constraints belonging to the 

domains of interest. 

Furthermore, in the right side of Figure 9, the dialog shows the list of generated 

configurations by applying the constraints from previous step.  The right panel shows the 

hierarchical (tree) view of the design space.  A user can click on the configuration and see all 

selected components highlighted. For example, in Figure 9, the configuration 1 is selected. As 

soon as this configuration is selected, the components that form this configuration in the design 

space tree are highlighted in bold face. This dialog also allows users to select key options that 

they want in all of the exported configurations. Checking appropriate checkboxes in the right 

hand side design tree completes this step. When options are selected, the appropriate 

configurations are automatically selected in the left side panel. The default behavior is to select 

only those configurations (intersection) that include all of the chosen options in the design tree. 
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However, when multiple design options of a single Alternative container are chosen, all 

configurations that include any of the selected options are selected (union). The dialog also 

contains several command buttons, which work as follows: 

 Export Selected: Export the selected configuration(s). 

 Export All: Exports all configurations. 

 Return to Constraints: Goes back to the prior constraint dialog (shown on the left side in 

Figure 9). 

 Return to CyPhy: Closes all dialogs and goes back to GME. 

The selected configurations are exported as Configurations With Constraints (CWC) models 

and placed in a folder of type Configurations in the top-level design space for which they were 

generated. A CWC model stores the references of the selected components in the configuration 

and references to the constraints that were applied to arrive at these configurations. Additionally, 

it contains a reference to the Design Space for which the configurations were generated. These 

are useful aids in traceability of the generated configuration. 

It is important to know that a CWC model contains the references to design elements of the 

design space without any connections or hierarchy. This is because, for any realistic design 

space, there are thousands of possible configurations at the static analysis stage.  Using fully 

elaborated models can quickly deplete all available system memory.  Another tool, described in 

the next section, called Design Space Component Assembly Exporter (CAExporter), is used to 

fully elaborate chosen configurations (CWC models).  A fully elaborated ComponentAssembly 

will include all of the connections between components and subsystems and preserves the 

hierarchy of the design space. 

4.2 Design Space Component Assembly Exporter (CAExporter) 
The DESERT process exports “configurations”, each one representing a set of decisions 

encapsulating a feasible design point. As mentioned in previous section, these configurations 

contain references to the design elements of the design space without any connections or 

assembly hierarchy. The reason for this is that a large design space may contain hundreds, even 

thousands, of design configurations that need to be further investigated to analyze their 

usefulness. Elaborating all of these design configurations in a fully-specified form (with 

connections and hierarchy) can quickly consume all available system memory. Hence, we have 

created a separate tool to convert the design configurations generated by DESERT to their fully-

specified form. We can also use this tool to convert design configurations one-by-one, run 

through system analysis, and keep/discard them depending upon their usefulness. This is useful 

way to deal with system memory constraints. This is also the way the Master Interpreter (MI), as 

described in later sections, uses the design space tools in an automated manner. 

The tool can be used to convert a single Configuration With Constraints (CWC) model, or a 

group of CWC configuration models, or even all CWC models contained in a Configurations 

folder depending what is selected prior to invoking the tool. The Figure 10 below shows a group 

of exported CWC models for a design space. 
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Figure 10: Sample exported design configurations 

Once a configuration (or a group of configurations) is selected and CAExporter is invoked, it 

creates a fully-specified assembly model for the chosen configuration. This fully-specified 

component assembly includes the full hierarchy of the models as well as all appropriate 

connections between components and sub-systems. At the same time, the tool also creates 

references of the generated component assembly models and places them next to the CWC 

models that were used for generating them and connects them so that the user can easily navigate 

to the corresponding generated component assembly from the configuration for which it was 

generated. As an example, the Figure 11 below shows the updated Configurations folder that 

now includes references to the corresponding generated component assemblies. 
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Figure 11: Design configurations converted to component assemblies 

These exported designs represent the pruned sub-set of all possible designs that satisfies the 

design-time constraints. User can use other types of analysis tools provided in OpenMETA to 

verify suitability of the designs and further prune/rank-order these configurations. 

4.3 Design Space Manipulation Tool (DSRefactorer) 
When a design space is being constructed, a user often needs to change design space 

elements. For example, when multiple vendors of a component become available, the static 

component in the design space could be replaced with an Alternative design container with 

multiple choices for the component. Another example could be when a sub-system has been 

explored and finalized; it could be replaced with a component assembly.  Similarly, there are a 

number of use-cases where the user needs to manipulate the design space elements in order to 

update the design space. Manual manipulation is doable, but requires a lot of unnecessary tasks 

like recreating ports in parent/child design elements, redrawing connections, etc. Furthermore, 

this is also susceptible to errors when done manually. The Design Space Manipulation Tool 

(DSRefactorer) helps avoiding these errors and remarkably increasing design efficiency by 

automatic all of these tasks. 

Additionally, after the initial Design Space Exploration (DSE) has been completed, the 

generated configurations are subjected to dynamic analyses for evaluation against the secondary 

requirements. The result of these detailed system analyses in terms of valid design selections and 

reformulations must be incorporated into the original design space, which must be re-explored to 

generate a new set of valid design configurations. This iterative nature of the design process with 

strong bidirectional coupling between design activities and system analysis and verification is a 

key requirement for CPS design. This necessitates re-working the original design space in 
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various ways, where the Design Space Manipulation tools becomes highly useful in automating 

the various design space manipulation tasks as described below. 

The main application of this tool is for converting existing components, component 

assemblies, or design containers into a new design container, or component assembly that can 

now include the new parts in it. In this process, a user first selects a set of components, 

component assemblies, or design containers and then invokes DSRefactorer. The tool will create 

new design elements depending on what was selected for refactoring. If more than one option is 

available, then the user is presented with a dialog to make the choice and then appropriate 

refactoring will be carried out according to user’s choice. The tool will perform the refactoring 

while preserving (or creating where needed) all connections and ports. It also maintains the 

overall hierarchical structure of the design space while manipulating its constituent parts 

according to user choices. Moreover, the tool also intelligently utilizes contextual information of 

where the manipulated design space element resides within the design space and what type it is 

to determine the set of refactoring actions that are applicable. 

Below is a summary of what options are applied or choices are presented to the user 

depending on the context of the design elements chosen for which the refactoring was applied. 

For brevity the Table 2 below uses the following acronyms: Component (CO), Component 

Assembly (CA), Design Element (DE), Design Space (DS), Design Container of Compound type 

(DCC), Design Container of Alternative type (DCA), Design Container of Optional type (DCO), 

Component Reference (COR), and Root Folder (RF). 

 
Table 2: Use-cases of Design Space Manipulation 

Use-case 

Name 
(Abbrevi

ation of the 

refactoring 

use-case) 

Conte

xt 
(where 

the 

refactorin

g was 

invoked 

from, i.e. 

inside 

which 

design 

element) 

Selection 
(what was the 

refactoring invoked 

on, i.e. the selected 

design elements 

before invoking the 

refactorer) 

Action 
(how the selected elements were 

refactored) 

InCA.0 CA None No dialog shown; New DS created (as a 

DCC) under RF 

InCA.1.

CA 

CA Single CA Dialog shown with choices (a) Extract 

elements of CA (b) Convert CA to a new CA 

(c) Convert CA to a new DCC 

InCA.1.

COR 

CA Single COR Dialog shown with choices (a) Convert 

CO to a new CA (b) Convert CO to a new 

DCC 



 

20 

InCA.>1

.COR 

CA Combination of 

CAs and CORs 

No dialog shown; New child CA inside 

current CA (parent) created; Child CA 

contains all selected CAs and/or CORs; 

Additional ports created for connection to 

objects in parent CA 

InDC.0 DC None No action; Usage information shown 

InDC.1.

CA 

DC Single CA Same as InCA.1.CA 

InDC.1.

COR 

DC Single COR Same as InCA.1.COR 

InDC.1.

DCC.0.DC 

DC Single DCC (not 

containing any DC) 

Dialog shown with choices (a) Extract 

elements of selected DC (b) Convert selected 

DC to a new DCA (c) Convert selected DC 

to a new CA 

InDC.1.

DCC.>1.DC 

DC Single DCC (that 

also contains a DC) 

Dialog shown with choices (a) Extract 

elements of selected DC (b) Convert selected 

to a new DCA 

InDC.1.

DCA 

DC Single DCA No dialog shown; New DCA created with 

selected DCA placed inside as child 

InDC.1.

DCO.1.DE 

DC Single DCO 

containing only 1 

DE 

Dialog shown with choices (a) Convert 

DCO into mandatory (i.e. extract its 

contained DE out), (b) Convert DCO to a 

DCA 

InDC.1.

DCO.>1.DE 

DC Single DCO 

containing > 1 DE 

Same as InDC.1.DCA 

InDC.1.

CA 

DC Single CA Dialog shown with choices (a) Convert 

selected CA to a new DCA with selected CA 

in it (b) Convert selected CA to a new CA 

with selected CA in it 

InDC.1.

COR 

DC Single COR Dialog shown with choices (a) Convert 

selected COR to a new DCA with selected 

COR in it (b) Convert selected COR to a new 

CA with selected CA in it 

InDC.>1

.DE.0.CA.0.

COR 

DC >1 DE selected, 

none of which is a 

DC 

No dialog shown; New DCA created with 

selected DEs in it 

InDC.>1

.DE.>0.CA.

or.>0.COR 

DC >1 DE selected, 

one of which is 

either a CA or a 

COR 

Dialog shown with choices (a) Convert to 

a new DC (with selected DEs in it), (b) 

Convert to a new CA (with selected DEs in 

it) 
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The Design Space Manipulation Tool is very useful for the iterative design process in 

OpenMETA. In conjunction with the Design Space Refinement Tool (described in the next 

section), it enables users to perform continuous design and analysis in an integrated and efficient 

manner allowing users to complete the feedback loop. This helps with evolving the design space 

as the system requirements, resources change, and as more analysis results become available. 

4.4 Design Space Refinement Tool (DSRefiner) 
One of the critical requirements of Design Space exploration and configuration generation is 

the capability to perform coarse-grained exploration and constraint satisfaction on some parts of 

the design space and when satisfactory configurations have been generated, do deeper refinement 

of those parts on the selected results. Such a capability is provided by the Design Space 

Refinement Tool. 

If a user endeavors to completely specify the entire design space down to individual nuts and 

bolts, not only does the design space becomes unmanageable, but the analysis tools of varying 

capabilities are difficult, cumbersome, and time-consuming to apply. It is even possible that the 

design space becomes so huge that it allows for generation of billions of configurations some of 

which only differ in a very small way such as color of the dashboard meter! Even if the user 

manages to reduce the number of configurations by using an appropriately chosen set of design 

constraints, using all the analysis tools (for all domains we need to analyze such as CAD, 

Thermal, Electrical, etc.) at such a detailed level becomes highly arduous and time-consuming. 

As such, we need to be able to specify design space at a level of detail that we are 

comfortable reasoning with. As there are constraints that are applicable at this level itself, it is 

desirable to make use of them and eliminate huge chunks of design space that are clearly 

infeasible. User then proceeds with generation of constraints at this coarser-level of design space. 

It is important to note that it is not necessary to specify all parts of the design space at the coarser 

level and it all depends on the level of detail for each part of the design space that user is 

comfortable reasoning with and have analysis tools available. The next step is, of course, to use 

the generated configurations and run various static and dynamics analysis. Once the analysis is 

over, a few configurations are down-selected that satisfy all static and dynamics design 

constraints. 

This is the point where the Design Space Refinement Tool can be invoked on a set of 

selected design configurations (CWC models generated by the Design Space Exploration Tool). 

The design space refinement tool will take these selected design configurations and convert them 

into a refined design space that can be reasoned with in the same way as the original design 

space. Even the generated refined design space looks very much like the original design space. 

However, the key difference is that any component, component assembly, or design container 

that is not part of any of the selected design configurations is not included in the refined design 

space. Secondly, the original static constraints are removed and a new visual constraint is added 

that directly encodes the configurations that were selected for design refinement. The reason for 

this is that the initial configurations were selected only after a detailed constraint satisfaction and 

dynamics analysis of the original coarse-level design space and there is no need for re-doing that 

work. 
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Note that for all components which are still part of the refined design space, all of their 

connections, ports, and properties are preserved in the generated refined design space. In fact, if 

Design Space Exploration Tool is invoked again on the refined design space, the configurations 

generated are exactly the same as those that were selected for refinement from original design 

space – with same look and behavior! 

The new refined design space is leaner and contains a direct representation of the originally 

selected design configurations. However, as it is still a design space, the user can freely refine 

and expand this design space as different parts of the design space are now included or some 

parts of the design space are further elaborated into greater detail. As described in the previous 

section, the Design Space Manipulation Tool becomes very useful here to convert existing 

components, component assemblies, or design containers into a new design container that can 

now include new parts in it. 

Below we provide an example to illustrate the design space refinement process. Figure 12 

shows the top-level view of a sample Infantry Fighting Vehicle (IFV) drivetrain design space. 

 
Figure 12: Top-level view of example design space for IFV drivetrain 

When Design Space Helper tool is invoked on this design space, the tree viewer of the 

configurations shows that there are a total five configurations that satisfy all of the design 

constraints that were specified in the design space. Figure 13 shows the tree viewer of the tool. It 

can be seen in Figure 13 that both VU_ISG_V2 and VU_ISG_V3 are used in some of these five 

configurations. Also, both transfer cases are used, viz. 455 and 484. 
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Figure 13: Design configurations for example IFV design space in a tree-viewer 

When all of the five configurations are exported, each of them is then elaborated from CWC 

models (containing only design element references with no connections or hierarchy) to fully-

specified component assemblies with hierarchy and connections. Figure 14 shows the five 

generated configuration models and a fully-specified component assembly corresponding to 

configuration #3. 
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Figure 14: Generated configurations (with component assembly) for example IFV design space 

Next the detailed analysis is performed for these fully-specified component assemblies. Let’s 

assume that after analysis, configurations #2 and #3 were selected. Next, we select the cfg2 and 

cfg3 CWC configuration models in GME and invoke the Design Space Refinement Tool to 

generate a new refined design space that includes only these two design configurations. Figure 

15 shows the top-level view of the refined design space. Notice that this looks exactly like the 

original design space, except that a new reference to the original design space and a new visual 

constraint is added to the refined design space. 

 
Figure 15: Refined design space for chosen configurations of IFV design space 

However, when we look deeper into the ISG design alternatives in the refined design space 

(see Figure 16), we can see that now it contains only VU_ISG_V3 ISG (and only 455 transfer 

case) as the constituent component. The detailed path to ISG container can be seen in the title of 

the GME window in the Figure 16. 
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Figure 16: Refined (ISG) design container in refined IFV design space 

At this point, user can safely edit the refined design space for further elaboration or 

refinement as is normally done during design space modeling. Newer design constraints can also 

be added along with this refinement. Moreover, if more alternatives need to be added at the same 

level as an existing design element (i.e., a component, a component assembly, or a design 

container), then the Design Space Manipulation Tool can be used. 

In summary, the Design Space Refinement Tool allows the user to select a subset of 

configurations of a design space and generate a refined design space using these configurations. 

The refined design space has the exact same hierarchical structure, ports, and connections as are 

in the original design space, but omits design elements from the original design space that are not 

part of the selected configurations. Further, original design constraints are removed, but a new 

visual constraint is added that ensures that when Design Space Exploration Tool is run on the 

refined design space, the exact same set of configurations are generated. This avoids repetition of 

the analyses that were done in the original design space. Thus, the Design Space Refinement 

Tool is highly useful for gradually building design spaces, performing coarser-grained analyses, 

and incorporating the results for refining and manipulating the design space. 

4.5 Design Space Criticality Meter (DSCriticalityMeter) 
The Design Space Criticality Meter is an important tool for informed use of Design Space 

Manipulation and Design Space Refinement Tools.  During the design space refinement process, 

user selects a set of configurations based on the outcome of static and dynamic analysis of all 

configurations for further refinement. Using the Design Space Refinement Tool, user converts 

the selected configurations into a newly created refined design space.  This new refined design 

space is leaner and a direct representation of the originally selected design configurations with all 

connections, ports, and properties preserved. The newly created refined design space can be 

freely refined and expanded for further design space exploration and refinement. Also, the 

Design Space Manipulation Tool is used to convert existing components, component assemblies, 

or design containers into a new design container that can now include new parts in it. For both of 

these tools to be used with greater information, the Design Space Criticality Meter can be used to 
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determine the usefulness of refining or manipulating a particular component, component 

assembly, or a design container. 

One example of the key criticality metrics that is of immediate help to the designer is the 

number of configurations a particular component, component assembly, or a design container 

appears in. Depending on the design space, user may choose to refine a design element that is 

included in all or some reasonable number of configurations. It is important to note that at this 

stage only those design elements will appear in the refined design space that are part of at least 

one of the chosen configurations for refinement. In general, design elements appear only in a 

subset of all design configurations depending on how many alternatives were designed in the 

design space. As such, it is important to know how many configurations include a particular 

design element. This is even more important in vendor selections and reliability analysis.  This 

metric is also a parameter of the overall design complexity of the design space. 

The Design Space Complexity Meter currently shows the number of configurations for all 

components, component assemblies, and design containers. This is shown as an attribute of 

design elements called NumAssociatedConfigs. In the future, more metrics related to the 

complexity of design elements can also be appended. The criticality metric is illustrated in 

Figure 17. It shows that ISG-1 wasn’t selected in any design configurations, whereas ISG-2 was 

selected in 3 of 5 design configurations. This example is for original IFV drivetrain design space.  

 
Figure 17: Criticality metrics generated by Design Space Criticality Meter 

Also, when invoked, the tool calculates these numbers for all design spaces that are in the 

GME model. The tool internally runs the Design Space Exploration Tool and applies ALL 

constraints of design space and updates the NumAssociatedConfigs attribute for all of the design 

elements in the design space. The tool runs in batch mode such that NO user selection dialogs are 

presented (e.g. to select only a few constraints in a design space). 

4.6 Supporting META Tools 
Several other interpreter components exist in OpenMETA that are associated with DSE. The 

Component Authoring Tool provides importing capability from various domains (e.g. CAD, 

Modelica) into OpenMETA tools. After the component library is populated the Component 

Library Manager helps to discover and insert different instances of the same component types 

into an alternative design container. Once components and subsystems are composed in a design 

space and design configurations are exported the Master Interpreter automates the translation of 
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all designs into executable domain specific models. After the model transformations, it transfers 

the generated executable models (analysis packages) to the Job Manager, which executes the 

analyses using domain specific tools, e.g., Dymola, Creo, etc. 

  



 

28 

5.0 Iterative Design Process in META 

CPS design is a major integration problem because of their inherent complexity and 

unexpected component interactions. As shown in [7], the design process must allow for the 

continuous existence of an executable system, with a concrete architecture, well-defined 

interfaces, and an executable form. This allows designers to analyze their designs earlier during 

the design process and obtain useful feedback. This facilitates less error-prone designs, saved 

manpower, and manageable design spaces. 

To enable the iterative design process for CPS-s, OpenMETA supports three key design 

flows. As shown in Figure 18, the first design flow is a classic top-down design space 

construction. In this case, the user begins with the top-level design container and adds design 

elements to it and constraints on those elements according to design requirements. A second 

design flow involves starting from a single seed design. This design flow is highly applicable for 

the real-world design use-cases, where there are existing designs and design processes. Starting 

from the seed design, the user extends the design space (using the tools mentioned above) to add 

alternatives in place of concrete design elements such as components or component assemblies. 

In this fashion, the user grows a larger design space from that seed design. Another supported 

design flow is when the user does not have concrete design elements or assemblies to work with. 

In this case, the user can use surrogate equations in place of design space elements. The design 

space can still be explored and analyzed. These surrogates can then be replaced with more 

accurate models as they become available. Surrogates are also helpful for performing coarse-

grained analyses, the results of which can be used to refine the design space. 
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Figure 18: Iterative design process in META 

It is important to note that while there are several design flows that users can exercise in 

OpenMETA, all of the design space tools, such as DSRefactorer and DSRefiner, are equally 

applicable. Different design flows do not eliminate the need to continually evolve design spaces 

using a closed-loop integration of design and analysis activities. As shown in Figure 18 and 

described previously, OpenMETA provides several supporting tools to build, test, and analyze 

design configurations. 
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6.0 Case Study 

In this section we present a simplified drive line model as a case study for design space 

exploration. Many CAE tools (e.g., CAD, FEA, CFD, and Modelica) have great capabilities to 

analyze a design, but creating/extending design in CAE tools often takes significant time, and 

invariably requires subject matter expertise. To improve the process, a seed design point needs to 

be altered with alternative component instances to evaluate which combination performs better. 

We use DSEM tools in OpenMETA to capture architectural alternatives and specify design 

constraints, generate configurations that satisfy these constraints, and then apply a set of model 

transformations to generate composed executable models for the CAE tools. 

 
Figure 19: Drive-line design space model 

Figure 19 shows the design space of a simplified drive line that contains several subsystems. 

The architecture and composition of the design space was derived from a single design point 

built in Modelica. The design space is extended with additional engine, power take-off module, 

transmission, final drives, hydraulic fan, and hydraulic pump alternatives. This leads to a 

significantly large design space – 15456 configurations – many of which are not viable due to 

design constraints. Figure 20 shows 4. FinalDriveSymmetry constraint ensures that the left and 

right drives have the same gear ratios. MinPower and MaxPower constraints assert that the 

engine’s nominal power lies between the transmission’s minimum and maximum power ratings. 

NoMoreThanOnePumps ensures the design uses no more than one hydraulic pump. Application 

of these constraints reduces the viable number of designs to 47 – a manageable set that users can 

analyze. 
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Figure 20: Constraints used in the drive-line design space 

Configurations are composed across various domains, but here we briefly illustrate the 

composed Modelica models, simulation execution, and visualization of results for completeness. 

Please note that further details on model composition, simulation execution and visualization are 

presented in other chapters of the META final report.  

We analyzed the behavior of the selected 47 configurations using the Modelica simulation 

tools and collected results are shown in Figure 21. It shows two visualization capabilities of the 

Project Analyzer (a) parallel axis plot and (b) multi-attribute decision analysis. The parallel axis 

plot has vertical axis for each variable of interest from the analysis and each colored plot 

represents a design configuration. The requirement objective and threshold values are shown 

with green and red colors respectively. The multi-attribute decision analysis widget shows an 

ordered list of configurations based on the user’s specified weighting of each variable of interest. 

This is an interactive widget that helps to quickly identify differences between designs and 

choose the best design based on user preferences. 

 
Figure 21: Project Analyzer showing parallel axis plot and multi-attribute decision analysis 
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7.0 Conclusion 

Cyber-physical systems are tremendously hard to design and analyze due to continuous 

interaction between different domains of the system as well as the use of cyber infrastructure to 

facilitate information flows between system components. This becomes even more challenging 

when the designer is faced with ever-changing system requirements and vendor management. 

Consequently, designs are never fixed in stone and are subject to continual development. 

However, adapting designs involves a huge penalty in terms of time and resources to make sure 

that the design meets system constraints as well as satisfies the new requirements for which the 

system design is being adapted. This is where the strength of OpenMETA tool chain for 

constraint-driven design space exploration and manipulation is highly useful. The variety of 

design space tools discussed in the sections above provide for a complete tool-suite to enable the 

iterative design process of cyber-physical systems. This not only enables highly efficient design 

process, but lends the designs themselves to be highly analyzable. Furthermore, the additional 

supporting tools, as discussed above, provide deeper insights into the designs and provide full 

support for their evaluation, ranking, and visualization of key system metrics. 
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8.0 Future Work 

In the future, as the opportunity arises, we plan to further extend our tool chain to increase its 

capabilities. In particular, we plan on adding: 

1. Adding additional design space manipulation tools, 

2. Increasing the library of supported design constraints including those that get 

automatically generated from specifications and ones that facilitate succinct representations of 

existing methods, and 

3. Increasing feedback messaging from analysis tools into design space exploration and 

manipulation. 
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