Scalable Cyber-Physical Simulation for Automated Cyber Agent Training

Modern cyber-physical systems (CPS) are highly complex systems-of-systems, in which understanding the breadth and severity of cyberattacks is highly challenging. As cyberattacks and defensive operations become increasingly automated, there is a greater need to understand the complexities of interactions between the cyber and physical worlds. A scalable, detailed simulation platform will provide a means of developing and evaluating automated techniques within these complex systems.

NeTS: JUNO2: STEAM: Secure and Trustworthy Framework for Integrated Energy and Mobility in Smart Connected Communities

The rapid evolution of data-driven analytics, Internet of things (IoT) and cyber-physical systems (CPS) are fueling a growing set of Smart and Connected Communities (SCC) applications, including for smart transportation and smart energy. However, the deployment of such technological solutions without proper security mechanisms makes them susceptible to data integrity and privacy attacks, as observed in a large number of recent incidents. If not addressed properly, such attacks will not only cripple SCC operations but also influence the extent to which customers are willing to share data.

EdgeNet: An online Edge Computing Based Generative Anomaly Detection and Prognostics Solution for Networked Equipment at Customer Premises

Anomaly detection, prognostication and automated mitigation are very critical for data center management. Most of these approaches can be divided into two categories - model-based and data-driven. While model-based techniques rely on physics guided models that can explain and predict the expected progression of parameters such as temperature and voltage in electronics, the data-driven approach is suitable for complex scenarios where a suitable physics based model is unavailable. The data-driven approaches can be further divided into supervised and unsupervised methods.

Rapid Scenario-Driven Integrated Simulation Experimentation Framework

Cyber-Physical Systems (CPS) are composed of a wide range of networked physical, computational, and human/organization components. These systems are highly complex as they have many different heterogeneous components, such as physical, computational, and human. Simulation-based evaluation of the behavior of CPS is complex, as it involves multiple, heterogeneous, interacting domains. Each simulation domain has sophisticated tools, but their integration into a coherent framework is a difficult, time-consuming, labor-intensive, and error-prone task.

Cyber Makerspace - Science of Security for Cyber-Physical Systems Lablet

Makerspaces are very popular because they provide a hands-on experience for young learners to experiment with technology. One drawback is that the focus of educational experiences in makerspaces are necessarily on the hardware. Computing aspects, especially more advanced concepts such as cybersecurity, take a back seat. We will team up with Martin Luther King Jr.

CPS: Small: Integrated Reconfigurable Control and Moving Target Defense for Secure Cyber-Physical Systems

Cyber-physical systems (CPS) are engineered systems created as networks of interacting physical and computational processes. Most modern products in major industrial sectors, such as automotive, avionics, medical devices, and power systems already are or rapidly becoming CPS driven by new requirements and competitive pressures.

Subscribe to Security of CPS/IoT